제 출 문

한국과학기술기획평가워 워장 귀하

본 보고서를 "혁신성장동력 정책 개선안 도출을 위한 신재생에너지 분야 이슈 분석에 관한 연구"의 최종보고서로 제출합니다.

2019. 12. 31.

연구기관명 : 한국에너지기술평가원

연구책임자 : 이창구 선임연구원

연 구 원:서재영

연 구 원 : 오건웅

연 구 원: 김도형

연 구 원: 오정환

연 구 원: 박아름

연 구 원:서지현

연 구 원 : 이정인(한국에너지기술연구원)

연 구 원 : 문경은(한국연구재단)

요 약 문

- I. 제 목 : 혁신성장동력 정책 개선안 도출을 위한 신재생에너지 분야 이슈 분석에 관한 연구
- Ⅱ. 연구개발의 목적 및 필요성
 - 산업부, 과기부 등 관계부처, 공공기관, 민간 공동 협의체를 구축 하여 신재생에너지 사업 간의 협력 및 연계 추진이 필요함
- Ⅲ. 연구개발의 내용 및 범위
 - 부처간 협력이 가능한 기획 과제를 발굴하고, R&D, 인프라, 제도, 보급 등 현황 점검 및 개선사항 도출

IV. 연구개발결과

- 연구개발 및 정책 개선안(전략) 도출
 - · (태양광) ①결정질 실리콘 태양전지 밸류체인별 경쟁력 강화, ②밸류체인별 소부장 기술자립을 통한 국산화, ③산업화 촉진을 위한 국내외 실증단지 확대, ④제조 및 성능검증 양산 연계 플랫폼 인프라 필요, ⑤RPS 제도에 편중된 제도적 비효율성 개선 필요, ⑥국내 보급량 증가에 따라 합리적인 범부처 규제 개선 필요
 - · (풍력) ①국내외 시장 선점을 위한 선제적이고 체계적 R&D 계획 수립, ②신뢰성 확보를 위한 성능시험 평가기술 확보 필요, ③초대형 풍력터빈 및 가격경쟁력 강화 위한 신규 소재 개발, ④대규모 해풍단지 건설 위한 계통 연계 계획 수립, ⑤공공주도형 사업, 대규모 프로젝트 전담관리 등 내수시장 확보 필요, ⑥풍력 연관산업 밸류체인 집중화를 통해 기반 및 가격경쟁력 확보

- · (ESS) ①시장성/혁신성 소재의 연구개발 투자 포트폴리오 필요, ②ESS 안전성 확보 위한 발화요인 제거 체계적인 실증사업 강화, ③ESS 안전성 평가 인프라 마련과 인력양성 프로그램 다변화 필요
- 태양광, 풍력, ESS 분야의 부처간 협력 주제(안) 8개 도출
 - · (태양광) 건물형, 모빌리티, 농촌형, 수소 생산 연계 주제 도출
 - · (풍력) 차세대 초대용량/부유식 풍력발전시스템 및 풍력-지역 난방 시스템 주제 도출
 - · (ESS) 분산전원 대용량 전력공급시스템 주제 도출

V. 연구개발결과의 활용계획

- 관계부처와 협의 통해 발굴된 주제를 차기 사업기획 또는 과제 기획 시 활용 검토

SUMMARY

- I . Title : Issue Analysis on Renewable Energy for Improvement of Innovation Growth Engines
- II. Purpose and necessity of Analysis
 - Cooperation and linkage between new and renewable energy projects is needed by establishing a joint council with relevant ministries(MOTIE, MSIT, etc.), public agencies and private sectors.

III. Contents and range of Analysis

- Identify subjects that enable cooperation among government ministries, and check status and indentify improvements of Research and Development(R&D), infrastructure, systems and distribution.

IV. Results of Analysis

- Results(Strategies) of R&D and policy improvement
 - (Solar cell) ①Strengthening competitiveness of compacies on Crystalline-silicon solar cell value chain, ②Localization material-component-facility technologies that are of independent, ③Expansion domestic and foreign demonstration complexes to promote industrialization, (4) Platform infrastructure linked mass production for verification of manufacture technology and performance, ⑤ Need to improve institutional inefficiency centered on RPS(Renewable energy Portfolio Standard) system, 6Need to improve rational government regulations with increasing domestic supply

- · (Wind power) ①Establish a preemptive and systematic R&D plan for preoccupying domestic and overseas markets, ② Need to secure performance test evaluation technology to secure reliability, ③Development of new materials for extralarge wind turbines and price competitiveness, ④Establish system linkage plan for construction of large scale wind farm, ⑤Need to secure domestic market such as public led projects and large scale project management, ⑥Securing infrastructure and price competitiveness by centralizing the value chain of wind power industry
- · (ESS) ①Need for R&D investment portfolio of marketable/ innovative materials, ②Strengthen systematic demonstration business eliminating ignition factors to secure ESS safety, ③Need to prepare infrastructure for ESS safety assessment and diversify manpower training program
- Derived eight topics for cooperation among ministries in the solar cell, wind power and ESS fields
 - · (Solar cell) Derivation of topics related to building, mobility, rural, and hydrogen production
 - · (Wind power) Derivation of topics ralated to next generation super capacity/floating wind power generation system and wind-district heating system
 - · (ESS) Derivation of topics ralated to distributed power supply large capacity power supply system

V. Applicatioin plan of analysis results

- Review and use the topics discovered in consultation with the relevant ministries when planning the next project

Contents

I. Overview of the assignment 1
1. Overview of implementation plan for innovation growth engine
2. Management of New and Renewable energy joint council 2
$\boldsymbol{\Pi}$. Progress and Results of the council 4
1. Progress of the council management 4
2. Summary of policy improvement by sector(Implication) 5
${\rm I\hspace{1em}I}$. Issue Analysis by New and Renewable energy
sector 6
1. Solar cell 6
2. Wind power 21
3. ESS 32
IV. Derivation of promotion work 39
1. Multi-Ministry cooperation subject(Draft) 39
[Attachment] 42
1. List of council members 42
2. Outline of Multi-Ministry cooperation subject(Draft) ····· 43
[Appendix] Report of council operation plan & results 51

목 차

I. 과제의 개요 ···································
1. 혁신성장동력 시행계획 개요 1
2. 신재생에너지 추진단 운영 2
Ⅱ. 추진단 운영 경과 및 결과4
1. 추진단 운영 경과 4
2. 분야별 정책 개선안 요약(시사점) 5
Ⅲ. 신재생에너지 분야별 이슈 분석 6
1. 태양광 6
2. 풍력 21
3. ESS 32
IV. 추진과제 도출 ···································
1. 다부처 협력 과제(안)
[붙임] 42
1. 신재생에너지 추진단 위원 명단 42
2. 다부처 협력 과제(안) 개요서 43
[부록] 추진단 운영 회의 계획안 및 결과보고 51

혁신성장동력 정책 개선안 도출을 위한 신재생에너지 분야 이슈 분석 보고서

2019. 12.

한국<mark>에너지기술</mark>평가원 신 재 생 기 획 실

I 과제의 개요

1. 혁신성장동력 시행계획 개요

□ 추진 배경

- o 혁신성장동력 추진계획('17.12.22)에서 제시한 분야별 맞춤형 육성 전략을 바탕으로 분야별 구체적인 세부 실행계획을 마련
 - 혁신성장동력 육성 정책의 성과를 조기에 창출하여 국민이 조속히 체감할 수 있도록 세부 시행계획 마련 필요
- o 혁신성장 선도프로젝트, 패키지型 R&D 투자플랫폼, 규제혁신 토론회 및 4차산업혁명위원회 계획 등과 연계한 혁신성장동력 실행계획 필요
 - 4차 산업혁명 등 산업질서 변화에 적극 대응하여 산업경쟁력을 제고하기 위해서는 과학기술혁신에 기반을 둔 성장동력의 육성 정책 추진 필요

□ 「혁신성장동력 기획·관리 및 운영사업」 개요

- o 법령상 근거 : 과학기술기본법 제16조의5(성장동력의 발굴·육성), 동법 시행령 제24조의5(성장동력 발굴·육성계획의 수립)
- o 취지 : 혁신성장동력 발굴·육성을 위한 기획, 협의체 운영, 성과 확산을 지원
- o 대상분야 :

o 추진체계 : 소관부처(과기부) - 전담기관(KISTEP) - 주관기관(KISTEP) - 위탁연구기관(에기평 신재생기획실)

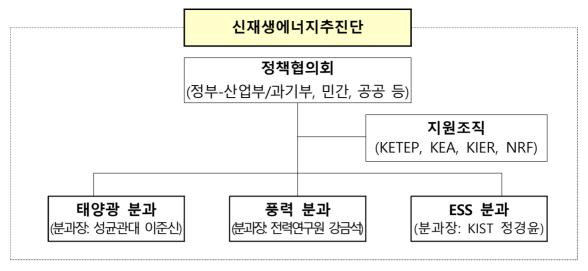
2. 신재생에너지 추진단 운영

□ 목적

- o 산업부, 과기부 등 관계부처, 공공기관, 민간 공동 협의체를 구축하여 신재생에너지 분야 사업 간의 협력 및 연계 추진
- o 부처간 협력이 가능한 기획 또는 보급 연계 가능한 과제를 발굴하고, R&D, 인프라, 제도, 보급 등 현황 점검 및 개선사항 도출

□ 「신재생에너지 추진단」 개요

- o '18년부터 혁신성장동력 13대 분야* 중 신재생에너지 분야 추진체계 (추진단) 운영
- o (취지) 혁신성장동력 발굴·육성을 위한 기획, 협의체 운영, 성과 확산을 통해 정책목표 달성에 기여
- o 위탁연구과제 개요 ('19.5월~12월)


본 과제명	혁 신 성 장 동 력 기 획 · 관 리 및 운 영			
주관기관	한국과학기	한국과학기술기획평가원(KISTEP)		
위탁연구과제명	혁신성장동력 정책 개선안	도출을 위한 신기 분석*	대생에너지 분야 이슈	
연구기관	한국에너지기술평가원	연구책임자/소속	이창구 팀장 / 신재생기획실	
협약연구비		15,000,000원		
연구기간	2019년 5월	1일 ~ 2019년 12	월 31일	

^{*} 회계명 : 혁신성장동력신재생에너지추진단운영(수탁사업비)

□ 구성 및 운영

o 추진단 구성

- 정책협의회, 3개 분과 및 지원조직으로 구성 (위원안은 [붙임1] 참조)

※ 태양광. 풍력. ESS 분야는 환경변화에 따른 필요 시 변동하여 추진 가능

o 추진단 주체별 역할

- 1) (정책협의회)
 - 신재생에너지 주요 이슈 및 부처간 연계방안에 대한 종합 검토
 - R&D부터 보급까지 분과에서 도출된 개선사항과 추진과제 검토, 향후 추진방안 수립
- 2) (분야별 분과)
 - 분야별 R&D, 인프라, 제도, 보급에 대한 현황 점검 및 애로사항/ 개선사항 발굴
 - 부처간 또는 보급 연계 가능한 과제 발굴
- 3) (지원조직)
 - 각 분과별 현황과 개선사항, 필요한 과제 발굴에 대한 자료 작성과 추진단 운영에 관한 실무 전반

o 추진단 운영

- 산업부(에기평, 에공단)-과기부(연구재단, 에기연) 협의체의 정기적인 회의를 통해 사업 추진현황을 공유하고 현안 발생 시 대응
 - · 분과 : 올해 말까지 분과별 2회 회의 실시
 - · 정책협의회 : 분과에서 검토된 내용에 대해 종합 검토하여 개선 필요사항 산업부, 과기부에 건의

1. 추진단 운영 경과

- □ 신재생에너지 분야 부처간 협력체계 운영
 - o 관계부처(산업부, 과기부)-공공기관-민간 공동 협력체계 운영
 - o 지원조직 착수회의, 정책협의회 착수회의 및 분야별 분과회의 통해 현황 및 개선사항 의논('19.5월~12월)
 - (5.21일) 추진단 지원조직 착수회의 : 지원조직 간 운영방안 협의
 - * 참석자: 에기평, 에공단, 에기연, 연구재단 등 지원조직 담당자
 - (7.25일) 추진단 협의회의 : 향후 운영방안 협의
 - * 참석자: 에기평, 에기연 등 지원조직 담당자
 - (10.1일) 추진단 정책협의회 착수회의 : 운영계획(안) 정책협의회 보고 및 추진단 역할, 전반적/분과별 운영방안 마련
 - * 참석자: 정책협의회(산업부, 과기부 포함), 분과장, 지원조직 및 에기평 담당자 등
 - (11.13일) 추진단 중간회의 : 분야별 현황 점검 및 주제 발굴 논의
 - * 참석자: 에너지R&D 산·학·연 전문가, 추진단 위원 및 지원조직 담당자
 - (12.2~12.5일) 추진단 분과회의 : 분야별 현황 및 개선사항 발굴
 - * 참석자: 추진단 분과위원 및 에기평/지원조직 담당자 등
 - (12.16일) 추진단 보고서 중간 검토회의 : 보고서 중간 검토
 - * 참석자: 추진단 분야별 위원 및 외부 전문가, 에기평 담당자 등
- □ 추진단 분과회의 및 정책협의회 통해 부처간 협력과제 도출
 - o 태양광, 풍력, ESS 분야의 부처간 협력 주제(안) 8개 도출
 - 관계부처와 협의 통해 발굴된 주제를 차기 사업기획 또는 과제 기획 시 활용 검토

2. 분야별 정책 개선안 요약(시사점)

□ 태양광 분야 정책 개선안

구 분	정책 개선안 요약
연구개발 및 실증	 결정질 실리콘 태양전지 밸류체인별 경쟁력 강화(폴리/잉곳제조원가 저감, 셀 초고효율/고생산성 기술 및 장비, 친환경소재, 인버터 효율 향상 및 장기 신뢰성 확보 등) 밸류체인별 소부장 기술자립을 통한 국산화 산업화 촉진을 위한 국내외 실증단지 확대
인프라	• 제조 및 성능검증 양산 연계 플랫폼 인프라 필요 • 자동 공정 모니터링 및 고효율 생산 가능 스마트팩토리 시범 사업 필요
제도 및 보급	• RPS 제도에 편중된 제도적 비효율성 개선 필요 • 국내 보급량 증가에 따라 합리적인 범부처 규제 개선 필요 • 수용성 개선과 함께 국내 기업에 이익이 되는 생태계 전환 요구

□ 풍력 분야 정책 개선안

구 분	정책 개선안 요약
어그게바다미	• 국내외 시장 선점을 위한 선제적이고 체계적 R&D 계획 수립
연구개발 및 실증	• 신뢰성 확보를 위한 성능시험 평가기술 확보 필요
<u>2</u> 0	• 초대형 풍력터빈 및 가격경쟁력 강화 위한 신규 소재 개발
	• 신속한 단지 개발을 위한 배후 항만 및 생산·조립단지 구축
인프라	• 대규모 해풍단지 건설 위한 계통 연계 계획 수립 요구
	• 공공주도형 사업추진, 대규모 프로젝트 전담관리 등 내수시장
제도 및 보급	확보 추진 필요
	• 풍력 연관산업 밸류체인 집중화를 통해 기반 및 가격경쟁력 확보

□ ESS 분야 정책 개선안

구 분	정책 개선안 요약
연구개발 및	•시장성/혁신성 소재의 연구개발 투자 포트폴리오 필요
실증	• ESS 안전성 확보 위한 발화요인 제거 체계적인 실증사업 강화
인프라	• ESS 안전성 평가 인프라 마련과 인력양성 프로그램 다변화 필요
제도 및 보급	• 태양광+ESS 시스템 경부하 시간 방전하는 한계 개선 필요

신재생에너지 분야별 이슈 분석

1 태양광

① 연구개발

ш

- □ (현황) 정책적으로 기술개발에 방점을 두고 있으나, 세계 최고 기술력에 비해 가격경쟁력이 열세인 상황, 차세대 전략기술 지원 필요
 - o (정책적) 산업통상자원부는 '재생에너지 3020 이행계획'에서 산업경 쟁력 강화를 위해 CTM(Cell to Module) loss 최소화, 양면발전형 고효율 모듈 등 단가 저감형 R&D 로드맵 수립과 R&D 클러스터 및 기술개발 허브 등의 혁신성장 클러스터 조성 계획을 발표
 - o 관계부처가 합동으로 발표한 '재생에너지산업 경쟁력 강화방안'에서 산업생태계 경쟁력 보강을 위해 고성능·고효율 세계최고 상용화 기술 확보를 위한 민간주도 R&D 로드맵 수립 계획을 발표

<제4차 에너지기술개발계획 태양광 분야 기술로드맵>

- o (기술적) 국내 기술은 꾸준한 기술개발을 통해 생산기반 세계최고 수준의 기술로 경쟁하고 있으나 셀 효율은 韓, 中이 모두 22~23%, 모듈 효율도 19~20%로 한-중 기술 격차가 거의 없음. (다만, 중국은 다결정 시장이 큰 상황에서 단결정과 다결정 태양전지 효율을 함께 통계를 내 한국이 기술적 우위인 것처럼 보이고 있음)
- o 셀의 경우 PERC 셀과 같은 주력 제품군은 국내 기업을 중심으로 세계적 기술을 보유하고 있으나, 고효율 셀(TOPCon 등) 미래 전략 기술에 대해 단계별 육성 시급함
- o (산업적) 국내 태양광업체는 국내·외 태양광 시장에서 중국 업체 대비 가격경쟁력 부족으로 시장 내 위상이 낮은 상황임 (셀: 韓 0.16\$/W, 中 0.14\$/W; 모듈: 韓 0.29\$/W, 中 0.27\$/W; 구조물 韓 2.3~2.8억/MW, 中 2.0억/MW)
- o 2018년 중국과 우리나라의 태양전지 및 모듈 수출액은 8.5배의 격차 (韓 16억\$, 中, 136억\$)를 보인만큼 중국과 규모의 경제 측면 경쟁은 사실상 불가능한 상황
- o 현재 글로벌 태양광 시장의 90% 이상은 결정질 실리콘 태양전지가 차지하고 있으며, 그리드 패러티 시대 개막으로 태양광 발전의 기존 발전원 대체 수요 증가를 바탕으로 세계 태양광 산업은 지속적으로 성장할 것으로 전망
- □ (개선 필요사항) 결정질 실리콘 태양전지 밸류체인별 경쟁력 강화 기술과 소재·부품·장비 및 신뢰성 확보 기술개발 필요
 - o 태양광 산업·연구계는 밸류체인별 맞춤형 기술개발과 이를 적용한 태양전지·모듈의 시험 제작, 특성 분석 등이 가능한 연구 인프라 구축을 지속적으로 요구
 - o (폴리실리콘) 제조원가 저감 및 고순도화 필요
 - 폴리실리콘 제조원가에서 전기요금이 40~48%를 차지하므로 전기 사용량 저감이 제조원가 하락의 핵심임
 - 현재 주류 기술인, "TCS-Siemens" 공법은 폴리실리콘 단위당 전기

- 사용량 저감에는 근본적 한계가 있어 혁신적인 공법 개발 필요
- 폴리실리콘은 TCS(Trichloro-Silane) 제조, TCS 정제, 폴리실리콘 증착(CVD, Chemical Vapor Deposition), STC(Silane Tetrachloride) 재활용으로 구분할 수 있으며, 각 단계의 수율과 단위 생산량을 향상시킴으로서 동일 전기량 대비 폴리실리콘 생산량 을 늘리는 것이 핵심임
- TCS가 실리콘으로 증착되는 과정에서 부산물로 다량의 STC가 만들어지는데, 이를 재활용하여 TCS로 전환하는 프로세스 중 Direct chlorination과 같은 환원법과 Hydrochlorination과 같이 MG-Si와 반응시키는 방법이 상용화되어 있으나 에너지 소모량이 크므로 이를 개선한 공정을 개발하면, 중국과 경쟁으로 어려운 폴리실리콘 업계의 원가 경쟁력 확보에 큰 도움이 됨
- o (잉곳/웨이퍼) 생산시 전력 사용량 및 원재료 사용량 저감 필요
 - 잉곳 생산비의 구성 중 전기사용량이 약 30% 이상을 차지하므로 전기 사용량 저감이 제조원가 하락의 핵심이며, 개별 성장로의 생산용량을 늘리는 저항가열 방식의 히팅법의 혁신이 필요함
 - 웨이퍼 생산비의 구성 중 단결정 잉곳 블록이 약 30%를 차지하므로 잉곳 블록 1kg 당 웨이퍼 장수를 늘릴 경우 원재료 사용량 저감 효과 가능함
 - 태양전지 업계의 추세가 원소재 사용량 감소와 얇은 태양전지 개발로 변화되고 있으므로 박막 웨이퍼 생산 기술 및 관련 생산 기술의 발전이 필요함
- o (태양전지) 초고효율 및 고생산성 기술 필요. 고생산성/대면적 장비, 친환경 태양전지 소재 필요
 - 태양전지의 기술 및 단가 경쟁력 확보를 위해 초고효율 상업용 태양전지, 고효율 양면수광형 기술 필요
 - 고출력화가 가능한 대면적 태양전지로 시장이 전환됨에 따라 대면적 웨이퍼 수요가 지속적으로 증가, 태양광 산업에 사용되는 웨이퍼 크기의 표준 전환이 예상되므로 대면적 웨이퍼(>166mm)의 고생산성 대응이 가능한 태양전지 공정장비 개발 필요

- 태양광 제품의 설치 장소는 수상·해상 등 다양화되고 있으며 태양 전지에 사용되는 소재에 대한 환경이슈에 관심이 높아지고 있으 므로 친환경 양면발전 태양전지 전극 소재 기술 개발 필요
- o (모듈) 출력 또는 효율 극대화 기술 개발 및 상용화 필요
 - 동일 효율의 셀을 이용하지만 모듈 출력 또는 모듈 효율의 극대 화를 위한 Cut & Connect 기술 (Shingling, Gapless등) 개발 필요
 - Gapless 또는 Shingling 가능한 Cutting 설비, 태버 및 interconnection 재료 국산화 필요
 - Cell의 overlapping에 의한 cracking 취약성 극복 및 기계적 하중 성능 확보 필요
- o (인버터) 시스템 발전효율 향상 및 장기 신뢰성 확보 필요
 - 국내 태양광 인버터의 전력변환효율은 98%로 해외 선진기업 대비 동등한 수준이지만, 해외 선진기업은 99% 달성을 위한 연구개발에 매진하고 있는 상황이라 전류 제어기술 개발 및 자성소재 개발 등을 통한 발전효율 향상 중요
 - 국내 태양광 인버터는 기후 신뢰성, 안정성에 대한 기술 기준개 발이 필요한 상황. 이를 위해 기후 적합 기준 개발 발열 구조 설 계, 가속수명시험 및 기대수명 향상 기술 개발이 필요
- o (신뢰성) 장기 신뢰성을 보장할 수 있는 모듈의 고품질화 필요
 - 태양광 셀과 리본이 산소, 습기, 산·염기에 손상을 입을 경우 태양광 모듈의 발전 효율 하락에 큰 영향을 미침. 태양광 모듈 백시트의 성능과 품질 수준은 태양광 모듈 사용 가능 시간과 발전효율 하락률에 크게 영향
 - 최근 태양광 모듈의 백시트 균열(Backsheet Crack), 황변 발생이 증가하고, 태양광 모듈의 수명을 저하시켜 조기 교체 또는 발전 효율 미달의 원인 중 하나로 이는 태양광 제품의 신뢰성 저하로 연결되어 장기신뢰성 향상 연구 필요
 - 모듈의 수명을 증대할 수 있게 모듈의 동작온도 저하, hot-spot free 모듈과 같은 고품질 모듈 연구 필요함

- o (시공 및 O&M) 성능저감 감지 시공 및 운영 유지 기술개발 요구
 - 대면적 태양광 발전소가 증가하는 만큼 조기 혹은 실시간으로 발전량을 모니터링하고 불량을 판단할 수 있는 기술, 태양광 발전 단지의 열화상 이미지만으로 모듈의 열화 등을 확인하여 불량을 판 단할 수 있는 기술 개발 필요
- o (소재·부품·장비) 기술자립을 통한 국산화 요구
 - (잉곳-소재) 흑연히터보다 에너지 효율이 좋고, 내산화성이 좋은 CCM(Carbon Composite Material) 소재로 히터와 관련 핫존을 만들면 내구도 향상에 따른 소모품비용 감소와 얇아진 히터 공간을 단열로 채워 넣어서 에너지 소모를 줄일 수 있고 생산원가 절감효과 가능
 - (잉곳-장비) CCM 히팅 방식과 같은 저항 가열방식이 아니라, 내부 핫존을 직접 가열하는 RF 히팅 방식은 전도열로 가열하므로 복사열 방식의 저항가열방식보다 에너지 효율이 높으므로, 이를 활용 시 에너지 저감이 가능
 - (웨이퍼) 실리콘 블록을 자르는 대부분의 장비는 스위스와 일본 등 해외장비에 의존하고 있어 국내 Wire saw 제조·장비 기술을 갖춘 필요가 있으며, 세계 최고 수준인 30 µm급 wire saw 제조 및 상용화에 성공한다면, 제품의 경쟁력 향상은 물론 장비 수출을 통해 관련 산업 육성이 가능
 - (모듈) 모듈 자재 대부분이 중국산이지만, Backsheet, Encapsulant (EVA, POE), Ribbon & Wire 등에서 CTM 개선과 장기신뢰성 확보에 특화한 제품 개발 요구 증가. 관련 소재, 부품 개발 시글로벌 경쟁력 강화 가능
 - (모듈) 최근 고효율 모듈 제작을 위해서는 여러 가지 제조 기술들이 적용되고 있는데, 그 중 Cell cleaving을 통한 Half cell 및 Inter connector ribbon 대신 Multi wire 적용을 통한 고출력 모듈 제작 및 장기 신뢰성까지 확보 필요

② 실증·시범사업

- □ (현황) 수용성, 보급 확대를 위한 건물형, 수상/해상형, 영농형, ICT 융합 태양광 기술 개발 및 실증연구 추진
 - o (수상/해상) 수상/해상 환경 실증 및 태양광 부품 기술 개발 추진
 - 수상/해상환경에 적용하기 위한 모듈, 부유체, 구조체 등 부품 기술, 내구성 및 설치 운영을 위한 기술
 - o (건물형) 태양광 발전의 기능뿐만 아니라 디자인적 요소로 확장된 기술 개발 추진
 - 건물 심미적 기능 및 건물에너지 활용 기능을 확대한 실증연구 추진
 - 건물에너지 자립화, 독립전원 등으로 기술 사업 확대
 - o (영농형) 농촌 환경에 활용이 가능한 기술 및 시스템 융합 기술 개발 추진
 - 농사와 태양광 발전 시스템을 병행하는 영농 병행 태양광 시스템 실증 추진
 - 농촌 수용환경에 보급 확대를 유연하게 대응하기 위한 보급형 대양광 시스템 개발 및 실증

<군산 국내 최대 18.7MW 단지>

<BAPV 적용한 강동구청 본관>

<충북 오창 솔라팜 설치>

<제천 청풍호 수자원공사 3MW 단지>

<BIPV 적용한 국내 공장>

<경남 고성 남동발전 설치>

- o (ICT/독립형) ICT 융합기술 적용을 통하여 태양광 발전, 에너지저 장, 운영 시스템 기술 개발 및 실증
 - 태양광 발전, 에너지 저장 연계 에너지 활용과 ICT 기술을 통해 실질적 독립형 에너지 운영 시스템 개발
 - ICT 기술 기반 태양광 발전 시스템 분석 및 O&M 강화 실증 연구 기술 개발

□ (주요 실증과제)

- o MW급 태양광발전 R&BD 실증단지 구축: 영남대학교 ('16.06. ~ '19.09. 정부출연금 83억원, 총사업비 91억원)
 - MW급 태양광 실증단지 운영 및 자립화 방안 수립, IECRE에 대응할 수 있는 MW급 태양광 실증단지 운영
- o 메탈프레임 부유체 기반 수상태양광 시스템 기술개발 및 1MW급 몽골 실증. ㈜에스에너지 ('17.05. ~ '20.04. 정부출연금 40억원, 총사업비 59.7억원)
 - 실증사이트 설치용 수상태양광 모듈 제작, 수상형 태양광 발전 시스템의 원격 모니터링 시스템 구축
- o 해상환경에서 적용 가능한 태양광 모듈 및 시스템 개발: 스코트라(주) ('18.06. ~ '23.05. 정부출연금 189억원, 총사업비 270억원)
 - 해상환경에 적합한 태양광 모듈 개발, 해상용 부력체 개발, 발전 시스템 개발과 해상태양광 표준플랫폼 및 사업화 모델 개발
- o 100kW급 농가 보급형 농업 병행 태양광발전 표준 시스템 개발 및 실증: 원광전력(주) ('17.12. ~ '20.11. 정부출연금 48억원, 총사업비 82억원)
 - 국내 농지에 적합한 친농업형 전용 모듈 개발, 농업병행 태양광발전 통합관리시스템, 300kW급 실증단지 구축 및 농작물 생육 분석과 평가
- o 태양광발전 운영효율 향상을 위한 통합관리시스템 개발: ㈜케이디티 ('15.10. ~ '18.09. 정부출연금 37.6억원, 총사업비 56억원)
 - PV시스템 통합관리 운용시스템 실증 및 평가, 비즈모델 개발, 실증단지 통합 운영 및 데이터 기반의 운영효율 분석

- □ (개선 필요사항) 산업화 촉진을 위한 실증 확대를 통해 실적 확보 하고 각종 규제 완화 필요
 - o 시장 확대 기술 실증을 위한 기존 규제 완화 문제
 - 건물, 해상 등의 다양한 실증을 위한 법적 규제 대응 지원 필요
 - 실증 연구개발 기술의 산업 확대를 위한 BM 및 정책 개발 필요
 - 실증 환경의 다양성 및 분석을 위하여 기술 중복성 인정
 - 실증 평가 결과에 대한 산업적용을 위한 확산 방안 및 DB 확보
 - 시스템/제조/운영 기술 기반 중소/중견기업의 해외 시장 개척을 위한 해외 실증 참여 확대
 - * 공공 또는 출연연을 주관기관으로 추진된 해외 실증 사업에 중소중견기업 참여 확대/국산제품 사용 가점 부여 등
 - 응용/융합 기술 실증을 위한 다부처 협의 및 부처간 규제 완화

③ 인프라 구축

- □ (현황) 중국의 R&D 인프라 투자 대비 국내 인력 및 연구센터 등 R&D 인프라 투자는 열세
 - o 현재 산업 전반을 독점하고 있는 중국의 R&D 투자 대비 국내 태 양광 기업의 R&D 투자와 연구 인력 규모는 열세
 - 대기업뿐만 아니라 중소·중견기업이 독자적인 태양광 R&D를 추 진하기에는 한계
 - 태양광 셀 제조 업계는 중국과의 가격경쟁력을 셀 효율로 보고 이에 대한 대응전략이 필요하다고 판단하고 있으며, 상호 교류 가 쉽고 전문분석이 가능한 전문분석연구시설 및 센터의 설립을 필요로 하고 있음.
 - 태양광 장비 업계의 경우 가격경쟁력으로 인해 마진이 극히 적고 양산라인에 제품 테스트가 어려워 기술을 테스트 할 수 있는 여건이 매우 부족함.

- 태양광 소재 및 부품 업계의 경우 R&D 비용의 축소로 인해 자체적인 투자(비용,시간,인력)를 하기 힘든 실정이라 양산라인에 적용이 가능한 제품의 평가와 feed back이 용이한 환경 조성이 필요한 상황임
- □ (개선 필요사항) 제조 및 성능검증 양산 연계 플랫폼과 같은 인프 라와 모니터링 시스템의 스마트화 추진 필요
 - o 태양광 소재·부품·장비·제품의 글로벌 경쟁력 확보를 위한 제조 및 성능검증 플랫폼기반 연구를 통한 산업경쟁력 강화가 필요함.
 - 100MW급 파일럿 양산라인 구축, 국산 소재·부품·장비 양산 검 증트랙기록(track record) 확보, 신제품 개발, 제조혁신, 공인성능 검증 등의 기능을 갖춘 기업공동 플랫폼이 필요함.
 - 상호 교류가 쉽고 및 전문분석이 가능한 독일의 Fraunhofer ISE, 싱가폴의 SERIES 등과 같은 전문분석연구 시설 및 센터의 설립 이 필요함.
 - o 양산 연계 연구 및 분석 기술 확보, 테스트베드 구축 등 인프라 필요
 - 태양광 산업 기업실태 조사 결과 장비 및 생산시설이 부족한 것을 확인. 경쟁력이 떨어지고 있는 결정질 실리콘 기반 태양광 영역의 경쟁력을 제고하기 위해서는 각 밸류체인의 저가화·고효율화 개발기술을 빠르게 양산기술화 하는 것이 필요. 이를 위해 밸류체인을 연계하여 공동연구가 가능한 양산급 공동연구 환경 필요
 - 태양광은 지속적인 가격경쟁의 압박으로 양산라인의 효율화와 셀, 모듈의 고효율화가 필요하고 각 공정 및 벨류체인별 재료와 효율, 산포의 상관관계가 매우 중요해짐. 신사업창출 및 분석기술의 고도화와 공정의 모니터링을 위해 분석 로직과 분석장비를 개발하고 적용하기 위해 연구하는 전문 분석기술센터 설립 필요

- 태양광은 다양한 환경과 기후에 설치되기 때문에 실제 설치환경과 유사한 환경에서 출력 측정 및 수명을 예측 가능한 기술개발의 필요성이 증가. 또한 모듈과 시스템의 장기신뢰성 확보를 위해 MW급 이상 태양광발전 실증단지 구축 요구도 증가
- 양산라인의 효율화와 4차 산업혁명에 대응하기 위해 태양광 분야에도 공정을 자동 모니터링하고 분석하여 효율적인 생산을 할수 있는 smart factory가 필요함. 가격경쟁력과 효율적인 생산을 위해 스마트 팩토리 시범사업 필요

④ 제도 개선

- □ (현황) 정책목표 달성을 위해 다양한 보급 확대 정책(설치 지원, 보급 의무화, 표준인증 지원 등) 시행 중
 - o 정부의 재생에너지 3020 이행계획은 전력계통 안정성, 국내기업의 보급여건, 잠재량 등을 고려하여 '30년까지 재생에너지발전량 비중 20%를 목표로 설정
 - o 이를 위한 국내 재생에너지 확산은 현재 RPS* 제도에 의존하나 규제 강화가 어려운 실정
 - 국내 재생에너지 보급 목표를 달성하기 위한 핵심 제도는 발전 사업자를 대상으로 한 RPS 공급의무비율로 정부는 '23년 10%에 서 '30년 28%까지 확대한다는 목표를 제시
 - * 재생에너지 공급의무화제도, Renewable Energy Portfolio Standards
 - o (신·재생공급의무화) 일정규모(50만kW) 이상의 발전사업자^{*}에게 발전량 의 일정비율 이상을 신·재생에너지로 공급하도록 의무화^{**}
 - * 한수원. 발전자회사(5개). 수자원공사. SK E&S. GS EPS 등 21개
 - ** 의무 불이행 시 공급인증서(REC) 평균거래가격의 150%이내 과징금 부과
 - o (신·재생연료혼합의무화) 수송용 연료공급자에게 바이오연료를 경유 에 일정 비율(~'17년 2.5%, ~'20년 3.0%)로 혼합하여 공급토록 의무화

< 연도별 의무공급량의 비율(신·재생법 시행령 별표3) >

2017	2018	2019	2020	2021	2022	2023	2024 ~
4.0%	5.0%	6.0%	7.0%	8.0%	9.0%	10.0%	-

- o (설치비 보조) 일반주택과 건물 또는 지자체 시설물 등을 대상으로 자가용 신·재생에너지설비 설치 보조금지원(50% 내외) 사업*을 추진
 - * '19년 예산 : 주택 700억, 건물 350억, 지자체 시설물 260억, 융·복합사업 635억
- o (설치 융자지원) 초기 투자비가 많이 소요되는 신·재생에너지 이용설비 및 제품 생산을 위한 설비 설치시 장기저리의 융자 지원* ('19년 2,750억)
- * 분기별 변동금리 1.75% 수준으로 5년 거치 10년 분할 상환
- o (태양광 대여) 대여사업자*가 가정에 태양광설비를 직접설치하고 대여료**를 통해 투자금을 회수하는 태양광 렌탈사업 운영
- * 대여료: 7년간(40,000원/월 이내), 8년~15년(18,000원/월 이내) ('18년 단독 3kW 기준)
- o (농가 태양광보급) 농가소득 향상, 주민 수용성 등을 고려해 농민의 발전사업 참여를 유도하는 농촌태양광사업*과 영농형태양광사업** 추진
- * 주민등록이 읍·면·동에 있는 지역 농민에 대해 금융 및 REC 가중치 우대 등 지원
- ** 농사와 태양광발전사업을 병행하는 사업모델로 금융지원 등 우대 지원
- o (공공기관 태양광) 공공기관(경찰서, 지구대, 파출소, 우체국) 소유 유휴 부지 활용 태양광 보급 확대
- * '18년 시범사업 9개 고용위기지역 145억(5MW), '19년 전국 공공기관 710억원(24.5MW)
- o (공공건물 의무보급) 연면적 1천㎡ 이상 공공건물의 신·증축 시 신·재생 에너지 이용*을 의무화 ('18년 24% → '19년 27% → '20년 30%)
- o (표준개발·KS인증) 보급시장에 설치되는 신·재생에너지설비의 성능 평가 표준을 개발하고 제품 품질향상을 위한 KS인증제도 운영
- * ('18년 기준) 19개 품목에 대한 KS표준 개발, 2,483개 모델이 KS인증을 유지 중

- □ (개선 필요사항) RPS 제도에 편중된 제도적 비효율성을 개선할 필 요가 있으며 법부처 규제 개선이 중요
 - o 국내 보급량이 증가함에 따라 범부처적인 규제 개선이 필요
 - 염해 간척농지 태양광 일시사용, 농지보전부담금 감면 시행 등 장애요인 해소와 부작용 방지를 위한 합리적 규제 보완 등 실시 필요
 - 정부 차원에서의 재생에너지 규제 개선을 통해 내수 시장의 활 성화가 이루어짐으로써 국내 태양광 산업의 경쟁력 강화가 필요
 - o 다양한 보급정책을 추진 중이나 RPS 제도 등 일부 제도에 편중된 생태계 구조로 비효율성 증가(비용↑, 효율↓)
 - * 기업의 경쟁력 강화보다는 REC 가중치 등을 통한 비용보전에만 치중
 - 기업의 자생력을 강화 할 수 있는 제도, 금융, 기술 등 정책적 인프라가 구축 필요
 - o 정부(산업부, 에공단)와 산업계 공동 정책 수립을 위한 창구마련 필요
 - 민관 공동의 노력으로 기업의 생산 및 원가절감 지원, 인수합병지 원 등 가려운 곳을 긁어줄 수 있는 실효성 있는 정책마련 필요
 - o 내수는 기술혁신제품 중심으로만 보호, RPS 등 기존시장(Regular market)은 자생력 확보를 위해 경쟁형으로 전환
 - 일시적인 지원 또는 기업회생 차원이 아닌 근본적인 기업 경 쟁력을 강화하기 위한 시장환경 조성 필요
 - 중국의 저가공세에 맞서 고품질, A/S 고급화, 판로다변화(미국, 유럽 등) 등을 위한 내수창출 전략 필요

5 보급 확대

- □ (현황) 재생에너지 3020 이행계획 발표 후 태양광, 풍력 중심으로 보급 급성장 중
 - o '19.6월까지 국내 재생에너지 보급실적은 19.69GW(누적)이며, 3020 이행계획이 본격적으로 시행된 '18년부터 급성장 중
 - '18년부터 '19.6월까지 18개월 동안 '17년까지 누적 설비규모의 약 1/3 수준인 4.59GW를 보급하였으며, 이는 同기간 목표 (2.94GW*)의 1.56배 수준
 - * 제8차 전력수급기본계획 內 전망: ('18년) 1,738MW ('19년) 2,402MW

o 태양광이 재생에너지 보급 확대를 견인 중

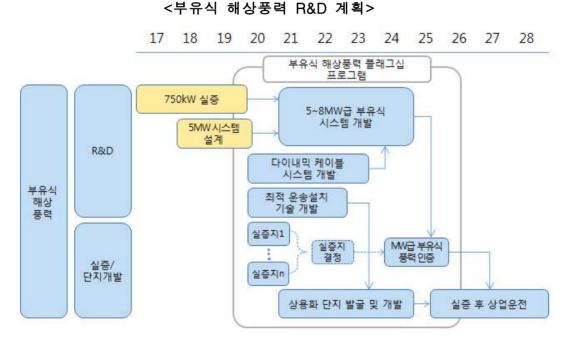
		'18년(MW)			'19년(MW)		
발전원	'17년(MW)	상반기	하반기	합계	전년동기 증기률(%)	상반기	전년동기 증가률(%)
태양광	1,362	901	1,127	2,028	48.9	1,345	49.3
풍력	114	72	95	167	46.5	133	84.7
수력	6	3	2	6	-	3	-
바이오	487	642	113	755	55.0	94	△85.4
폐기물	90	33	=	33	△63.3	21	△36.4
합계	2,059	1,651	1,338	2,989	45.2	1,596	△3.3

- (실적) '18년 이후 3.37GW 규모가 보급되어 재생에너지 전체의 73.6%를 차지하고 있으며, 반기별 실적도 지속적으로 상승 중
 - * ('17) 1,362 → ('18.상) 901 → ('18.하) 1,127 → ('19.상) 1,345 (단위: MW)
- (입지별) 태양광 기준, 산지규제 확대*로 산지 비중은 감소 중이며, 농지는 염해농지 및 농업진흥지역 밖 농지를 중심으로 보급이 확대 중, 건축물 옥상 활용한 태양광 설치도 지속
 - * 산지일시사용허가제도 도입, 경사도 허가기준 강화(25→15도), REC 가중치 하향(0.7) 등
- (규모별) 1MW 이하 중·소규모가 많은 비중을 차지하고 있으며, 한국형 FIT('18.6월)* 등 소규모 태양광 지원제도로 인해 개인, 농어민, 협동조합 등 소규모 주체의 태양광 참여가 활성화
- □ (개선 필요사항) 수용성 개선과 함께 보급확대가 국내 기업에 이 익이 되는 방향으로 생태계 전환 필요
 - o 국토의 효율적 활용과 설치면적확보를 위하여 유휴면적을 활용한 태양광 시스템 개발
 - 수상, 해상, 영농형, 산업단지 내 지붕형 태양광 시스템 개발 및 도입이 요구
 - BIPV를 비롯한 태양광 기반 도시형 마이크로 그리드 확산을 위 한 기술개발 및 제도개선이 필요
 - 공간 활용을 위한 대규모 태양광 시스템은 수십 MW에서 GW급의 대단위 사업으로 전력 인프라시설과의 연계성을 고려한 개발이 필요하며, 수상과 해상의 경우 전력시설과 물과의 관계를 고려하여야 함.
 - o 대형 태양광 시스템의 안전성, 경제성, 계통연계 기술 개발 및 주 민 수용성 개선 방향 제시
 - 기존의 육상 대비 가격경쟁력 확보가 필요하며, 안전성과 경제성을 위한 기술 개발 필요

- 현재 중·소규모의 전문 업체가 참여 중인 태양광 사업이 대형화를 통해 보급을 확대하기 위해서는 건설사 및 대형 엔지니어링업체의 참여가 필요함.
- o 기업에 실제 이익이 되는 정책으로의 생태계 전환 필요
 - 중국(53.1GW), 미국(10.7GW) 등 대비 협소한 내수시장(연2~3GW) 감 안 시 내수만으로 완전한 산업경쟁력을 확보하기에는 한계
 - 금융·세제, 내수, 기술(R&D) 등 태양광 생태계 전반의 개편 필요
 - 내수시장은 일정부분 보호하되 기업에 실제 이익이 될 수 있는 환경 조성을 위한 투트랙(Two track) 전략 필요

2 풍력

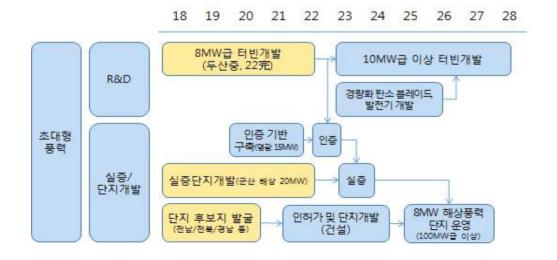
① 연구개발


- □ (현황) 풍력 시장 경쟁력 확보를 위한 국산화 및 미래 시장 대비 차세대 기술 개발 추진
 - o (단기) 우리 기업의 국내외 시장 경쟁력 확보를 위한 R&D 추진
 - 기술 추격형
 - 4.2MW 육·해상 공용 풍력발전기 개발 완료 및 시장공급 단계
 - * 3.5~4.0MW급 육상용 모듈식 드라이브 트레인 개발 및 실증('15.12~'19.9)
 - 5.5MW급 해상 풍력발전기 개발 완료 및 시장공급 단계
 - 8MW급 대형 해상풍력시스템 개발 중
 - * 8MW 대용량 해상풍력발전시스템 개발('18.6~'22.5)
 - 단가저감형
 - MW급 풍력발전기 핵심부품

Ŧ	¹ 분	개 발내 용	개 발현황
블레이드		블레이드 생산 자동화 시스템 개발	'19년 과제 시작 후 '21년 기술개발 완료 예정
증속기	-	3~5.5MW급 경량화 증속기	시장 상황 모니터링 후 과제 기획 예정
발전기		8MW급 풍력터빈용 직접구동형 발전기	'18년 과제 시작 후 '22년 기술개발 완료 예정
전력변환 장치		5MW급 이상 대용량 고효율 모듈러 전력변환기 개발	'19년 기획 중이며, '20년 신규과제 공고 예정

• 풍력단지 시스템 비용(운송·설치·유지보수) 절감

구 분		개발내용	개발현황
단지시공	TOP'	풍력터빈 운송 공법, 전용 설치 선박 등 운송·시공기술 개발	'18년 과제(페데스탈크레인 일체형 설치선) 시작 후 '21년 기술개발 완료 예정
O&M	73	ICT 기반 고장예측, 운영관리 유지보수 전문인력 육성 등 * O&M기술과 AICBM 기술융합	시장 상황 모니터링 후 과제 기획 예정
리파워링	V 0.0	노후 풍력단지 건전성평가, 폐블레이드 재활용 기술 등	'18년 과제 시작 후 '21년 기술개발 완료 예정


- o (중장기) 미래 시장을 주도할 수 있는 차세대 기술 R&D 추진
 - 부유식 해상풍력
 - 750kW급 부유식 해상풍력 파일럿 플랜트 시제품 제작 및 실증 준비 중
 - 5MW급 부유식 해상풍력 시스템 기본설계 진행 중
 - MW급 부유식 해상풍력 시스템 개발 및 실증 예정

- 초대형 풍력

• 8MW급 풍력터빈 개발, 실증 및 단지 개발을 연계하여 조기 상용화 하고, 10MW급 차세대 풍력 터빈 개발 착수 예정

<초대형 풍력 R&D 계획>

- □ (개선 필요사항) 시장 선점을 위한 체계적 R&D 계획 수립 및 신뢰성 확보를 위한 성능 시험 평가 기술 확보 필요
 - o 선제적 시장대응 R&D 필요
 - 국산 개발 제품 상용화 시점에 해외에서는 차세대 터빈에 대한 개발 시작이 예상되므로 기술 경쟁에 뒤지지 않도록 선도적인 개발 계획 제시 필요함
 - 국산이 사업화에 연계될 수 있도록 단지개발사 및 발전사 등과 협조 필요
 - o 핵심 부품을 위한 국내 시험 설비 구축 필요
 - 블레이드는 풍력발전기 개발의 핵심기술이며 소재, 설계기술 개 발과 아울러 초대형 제품에 대한 국내 시험설비 구축이 새롭게 필요함
 - * 현재 국내에 구축된 시험설비는 10MW급까지 사용할 수 있으며 차세대 제품을 위해서는 신규 대형 설비 계획 수립이 요망됨
 - o 부유식 해상풍력 체계적 추진 필요
 - 경제성 확보를 위해 10MW 이상으로 대형화해야 하며, 초대형 부유식 해상풍력시스템을 개발하여 시장에 보급하는 중장기 계획 수립 필요
 - 차세대 기술인 부유식 해상풍력은 개발 위험도가 크므로, 10MW 급 이하 국산 터빈으로 국내 해역에 맞는 시스템 개발·실증 후 순차적 대형화 필요

o 기술혁신형 과제 발굴

- 풍력터빈 대형화 및 가격경쟁력 강화를 위한 신규 소재 개발 추진
 - 블레이드 길이 증대에 소재가 Bottle Neck이며, 이를 위한 혁 신적 기술이 제안될 수 있도록 R&D 장려 필요
 - 발전기에 사용되는 영구자석의 주요 소재인 희토류는 고가이고 수입에 의존하므로 공급 리스크가 존재, 저가 소재 개발에 성 공할 경우 사업적 효과와 산업 파급효과가 클 것으로 기대됨

② 실증·시범사업

- □ (현황) 풍력산업 생태계 구축을 위한 실증단지 추진 중
 - o (해상풍력 실증단지) 국가 에너지전환 정책 기여 및 국내 풍력산 업 생태계 구축을 위한 지역별 해상풍력 실증단지 개발
 - 지자체 주도 해상풍력 단지 발굴 촉진을 위해 5개 지역 실증단 지 설계 과제 진행 중

과제명	지역(장소)	진행현황
울산 200MW 부유식 해상풍력 실증단지 설계 및 해상풍력자원 평가기술 개발	동해가스전 인근	· 지반조사 및 풍황계측중 · 해상교통영향 조사 진행중 · 배후항만 조사 진행중 · 군사보호지역 국방부 협의중
전북권 100MW 이상 해상풍력 실증단지 설계 및 해상풍력자원 평가기술 개발	전북 군산 말도, 부안군 인근	·지반조사 및 풍황계측 수행중 ·주민설명회 및 수용성조사 진행중 ·관련인허가 사전조사 수행중
경북 영덕 100MW 해상풍력 실증단지 설계 및 해상풍력자원 평가기술 개발	경북 영덕군 영덕변전소 앞바다	· 지반조사 완료, 풍황계측중 · 해양영향평가 해양물리측정중 · 전파영향평가 용역 수행중 · 주민설명회 및 수용성조사 진행중
안마도 220MW 해상풍력 실증단지 설계 및 해상풍력자원 평가기술 개발	전남 영광군 안마도 인근	· 발전사업허가 취득('19.4.) 후 단지 위치조정으로 허가 재추진 · 전파영향평가 조건부 승인 · 풍황계측 및 해양물리조사중 · 환경영향평가 용역 수행중
경남 통영 100MW 이상 해상풍력 실증단지 설계 및 해상풍력자원 평가기술 개발	경남 통영시 욕지도 인근	·지반조사 완료, 풍황계측중 ·해상교통영향 사전평가중 ·지역상생모델 용역 및 통영시 주민설명회 추진중

- MW급 부유식 해상풍력 실해역 실증 추진 중
- o (해상풍력 수용성 확보) 해상풍력 환경 영향의 과학적 규명과 수 산업 상생 모색을 위한 주민 공존형 R&D 추진
 - 공공연구소 주관으로 객관적인 해상풍력 장기 환경모니터링 수 행 중(서남해 해상풍력 실증단지를 대상으로 건설 전, 건설 중, 운영 중 해양환경 모니터링 수행)
 - 해상풍력과 수산업의 공존 방안 개발 및 현장 실증을 통한 가 능성 입증, 사업화 추진 중
 - * 해상풍력 수용성 문제는 단위 지역문제에서 전국적인 이슈로 확대 중

- □ (개선 필요사항) 체계적인 실증 단지 발굴과 주민 수용성 제고를 위한 혁신적 시범 사업 추진 필요
 - o 실증·시범단지 구축에는 장기간 소요됨을 고려하여 지속적으로 다양한 목적의 단지 발굴 추진 필요
 - 육상풍력, 해상풍력이 Grid Parity에 도달하여 타 에너지와 동등 해지거나, 국내 풍력터빈 제조산업이 글로벌 경쟁력을 확보하거나, 풍력터빈 기술 변화 속도가 완만해지는(단위기 20MW 수준) 시기까지 실증ㆍ시범단지는 필요할 것으로 예상됨
 - * 단기적으로는 부유식 해상풍력 기기 실증단지 필요
 - o 해상풍력 수용성 확보를 위해 주민상생, 수산업 공존 방식 개발의 선도적 시범사업 필요
 - 수산업 등 해상풍력의 다양한 이해관계자의 의견 표출이 본격화되고 있으며, 3020 이행계획 발표 이후 해상풍력 수용성 문제는 전국적인 이슈로 확대되고 있어 이에 대한 적극적 해결 필요
 - 지속적인 사업 성공을 위해서는 최초의 성공모델 실현이 매우 중요하며, 실증 및 시범사업의 시기가 지연될수록 수용성 이슈는 악화될 수 있음

③ 인프라 구축

□ (현황) 육상·해상풍력 확대를 위한 지원체계 구축 중

- o 해상풍력산업지원센터 구축 추진
 - (개요) 해상풍력 보급확대 및 산업 활성화를 위한 종합 지원체계 구축

해상풍력산업지원센터 구축(안)

■ 시행주체 : 한국에너지공단 신재생에너지센터

■ 사업기간 : 2020년 ~ 2024년

■ 소요예산 : 국비 220억원 (부지 · 건물 지자체 제공)

■ 주요기능 : 전문인력 양성, 지역 수용성제고, 단지조성 지원 등 산업지원

주요기능	세부기능
해상풍력 유지관리 인력 훈련 및 양성	전문인력 직업훈련·트레이닝, 해외 네트워크 연계 교육
지역사회 상생프로그램 개발	어민홍보 및 교육, 해양환경 장기 환경조사
해상풍력 단지조성 지원	해상풍력 단지조성 컨설팅 및 인허가 지원

- (현황) 타당성조사(군산대학교) 및 적격성심사(에경연) 완료 후 '20년 예산 확보중

o R&D·실증 센터

- 터빈 인증을 위한 테스트 베드가 부족한 상황으로 추가적인 실증 단지 구축 추진 중

<실증 R&D 현황>

실증단지명	과제명	과제기간	위치
김녕 실증단지	육상풍력발전 실증단지조성	'06.12.~'09.6.	제주특별자치도 제주시 구좌읍(육상)
	풍력발전설비 평가용 실증단지 확 장 개발	'12.11.~'14.10.	
월정 해상실증	국산 해상풍력발전기 실증 및 해상 풍력단지 조성(총괄)	'05.12.~'12.9.	제주특별자치도 제주시 구좌읍(해상)
기초구조물 해상실증	천해용(40M이내) 해상풍력 SubStrucrture 시스템 개발	'11.7.~'18.6.	전라북도 부안군 위도 인근(해상)
군산 해상실증	전라북도 부안군 위도 인근(해상)	'14.12.~'18.4.	전라북도 군산시 인근
	대형 해상풍력터빈 해상 실증 기술 개발	'18.6.~'22.5. (수행 중)	

• (군산 해상실증) 풍황·지반조사 실시, 대형 해상풍력 터빈 실증 가능한 기초구조물 1기 구축(~'20), 5MW급 터빈 설치 및 실증 수행(~'22)

o 육상풍력 통합 지원체계 구축

- 사업타당성 검토, 주민 수용성 확보, 인허가 정보제공 등 육상풍력 사업 全과정을 One-Stop 지원하는 「**풍력발전 추진 지원단」신설**

□ (개선 필요사항) 신속한 단지 개발을 위한 인프라 구축 필요

- o 배후 항만 및 생산·조립단지 구축 필요
 - 해상풍력클러스터 조성 시 생산·조립단지 구축이 필요하며, 해상 풍력발전시스템 기업 뿐 아니라 중·소 부품 기업까지 참여를 유 도하여 산업집적화 필요
 - 항만기본계획에 해상풍력클러스터 지원항만 반영 등을 통해 제 도적인 지원 필요

- o 기본 계획의 구체화를 통한 추진 가속화 필요
 - 에너지산업융복합단지
 - 전북 새만큼 지역 중심으로 1단계 태양광·풍력, 2단계 수소·연 료전지 등 에너지산업융복합단지 건설 계획 수립 및 추진
 - 광주·전남 전력 그리드 및 재생에너지 중심 융복합 단지 건설
- o 육지 계통 용량 지도 필요
 - 풍력발전 단지를 계통에 연계하기 위해서는 송전 선로에 여유 용량이 필요하나, 부족한 상황
 - 기존 전력망을 최대한 활용하기 위해 수십 MW급 송전선로 용량 여유가 있는 지역이 별도 표시된 지도 작성 필요
- o 해상풍력 단지 대규모 건설 위한 계통연계 계획 수립 필요
 - '30년 재생에너지 발전량 20% 달성을 위해서는 해상풍력 12GW 신규 설치가 필요하며, 해상 풍력발전 단지는 사업 규모가 수백 MW~수GW 급에 달해 계통 연계에 대한 고민 필요
 - 대규모 전력계통 연계설비 건설 계획 수립 필요하며, 이를 위해 해상풍력발전 대규모 단지개발 계획을 전력수급기본계획에 반영 하여 전력계통 보강계획이 수립될 수 있도록 지원 필요
- o 터빈 인증을 위한 테스트베드 구축 필요
 - 5MW급 이상 초대형 풍력 인증·실증 지원을 위한 테스트베드 구축을 위한 사업 추진(전남)
 - 저비용 모사 환경시험·평가·인증을 위해 15MW급 풍력 너셀 테 스트베드 및 기술지원센터 구축 추진(경남)

④ 제도 개선

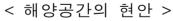
□ (현황) 풍력발전 단지개발 추진시 사업 지연 및 업체 경쟁 심화

- o (사업 지연) 육상풍력 발전사업허가를 득한 사업 224건(9.9GW) 중 지연중인 주요사업(80건)을 분석한 결과, 입지애로(45%), 주민 수 용성(20%) 등이 주요 원인으로 파악
 - 발전사업 허가 前 입지적정성, 환경성 등에 대한 사전 검토 없이 경제성 위주로 풍력발전 사업이 추진된 데 기인한 측면이 크며,
 - * 발전사업 허가기준: 재무·기술능력, 사업이행능력(부지확보, 계통연계 등)
 - 일부 비합리적이고 불투명한 환경규제, 사업자를 위한 통합 정보 제공 및 지원 시스템의 미비 등도 주요한 원인으로 분석
- o (경쟁심화) 수용성, 환경적 정책 강화에 따른 신규 풍력 시장 위축 으로 터빈공급 업체들 간 경쟁 심화
 - 국내 단지개발 사업자(발전사업자)의 국산 터빈 경쟁력 미흡(품 질·가격)에 따른 채택빈도 취약 (Track Record 확보 한계)
 - * 대규모 실적 및 가격 경쟁력 확보한 해외 풍력터빈 선호
- o (정책지원 한계) 자국 생산부품 사용 의무화 (LCR: Local Content Requirement)를 통한 국산 풍력터빈 육성시 WTO 제소·분쟁예상*에 따른 제도도입 한계
 - * (인도) 인도산 최소 51% 사용요구에 자국(미국) 업체 불이익 이유로 제소('15년)
 - * (캐나다) FIT에 LCR비율 60% 적용에 (일본)정부가 WTO에 제소('14년)

□ (개선 필요사항) 공공주도형 사업추진, 대규모 프로젝트 전담관리 등 내수시장 확보 추진

- o 사전환경성 검토 강화
 - 풍황자원과 환경 및 산림규제 정보를 사업자들에게 종합적으로 제공하는 「육상풍력 입지지도」마련
 - 발전사업 허가전 육상풍력 입지컨설팅(환경 & 산림) 실시 의무화
- o 입지애로 해소를 위한 규제 합리화
 - (환경부) '육상풍력 개발사업 평가지침' 명확화 및 예측 가능성 제고
 - (산림청) 국유림 대부기준 명확화 및 규제완화, 기존 임도 활용도 제고, 임도망도 및 산사태위험도 자료 제공

o 공공주도 해상풍력


- 정부·지자체 협업을 통해 발전지구 사전 타당성 검토를 지원하고 환경성·수용성 조기 확보가 가능한 GW급 해상풍력 단지개발 추진
 - 개발지구 사전 타당성 검토 : ① 풍황자원 조사, ② 인허가 저 촉여부 조사, ③ 지역 수용성 조사, ④ 발전단지 설계, ⑤ 기본 계획 수립
 - < 공공주도 대규모 해상풍력 단지개발 지원사업 추진 체계 >

구 분	주요 역할
산업부	사업 총괄 (예산확보·지원, 사업승인)
에공단	사업 전담 (사업비 운용 및 관리, 지자체 기본계획 수립 지원)
지자체 (사업수행자)	사업 수행 (단지개발 검토 계획수립, 발전지구 개발 추진)

o 해양공간관리계획(해수부)

- 기존 항만, 양식, 관공 등 뿐 아니라 에너지, 해양플랜트 등의 새로운 해양공간의 이용 수요가 증가하게 되면서 해양공간에 대한 경쟁, 이용갈등의 위협을 줄이기 위해 계획 수립 필요
- 해양공간의 통합적 관리를 위한 법률 시행에 따라 2021년까지 수립 및 시행 예정임

* 출처: 제1차 해양공간기본계획(해수부)

5 보급 확대

- □ (현황) 시장의 더딘 확대와 이로 인한 산업 생태계 형성 부진
 - o (시장동향) 민원, 입지제약, 외산점유율 확대 등으로 인해 안정적인 물량 확보가 곤란하여 기업들의 과감한 투자와 기술 축적이 제한
 - * 신규설치(MW) : ('15) 208 → ('16) 187 → ('17) 114 → ('18e) 168
 - '17년 투자규모는 약 120억원으로 급감하였고, 매출도 감소 추세이나 타워·단조부품 등 부품 단위의 수출은 꾸준히 유지
 - * 투자(억원) : ('14) 742 → ('15) 583 → ('16) 519 → ('17) 120
 - o (산업동향) 내수 축소, 외산 기업의 국내시장 잠식 확대 등으로 다수 터빈·부품기업이 사업을 철수함에 따라 기업수·고용 감소세
 - * 고용인원(명) : ('10) 2,551 \rightarrow ('14) 2,424 \rightarrow ('16) 1,813 \rightarrow ('17) 1,853
 - (터빈) 두산, 유니슨, 효성, 한진 등 4개社가 2~3MW 중소형 터 빈을 주력 생산, 국내시장 확보에 집중하여 해외 진출은 미미
 - * 주력품목: (두산重) 3MW급, (유니슨) 2.3MW급, (한진산업) 2MW급
 - (부품) 타워·단조부품은 경쟁력 확보하고 있으나, 터빈 맞춤형으로 설계·제작되는 블레이드 등 핵심부품*은 생산기반 취약
 - * 핵심부품 생산기업 : (블레이드) 1개, (증속기) 1개, (발전기) 2개, (전력변환기) 1개
- □ (개선 필요사항) 제도 개선을 통한 안정적 시장 창출과 기술개발로 가격 경쟁력을 확보하여 풍력산업 선순환 구조 마련 필요
 - o 안정적인 내수시장 창출* 및 내수를 토대로 우리기업이 한단계 도약 (Level-up) 할 수 있는 선순환구조를 만드는 것이 필요
 - * 최소 세계시장의 2% 수준 물량 확보(1GW) 시 내수를 바탕으로 수출 가능
 - 부족한 핵심기술 조기 확보를 위해 R&D 투자확대와 국내·외 기업 간 M&A를 적극 지원 필요
 - o 전체비용 중 설치·운송비 비중*이 높은 해상풍력 및 부유식풍력은 연관산업 벨류체인 집중화를 통해 산업기반 및 가격경쟁력 확보
 - * 풍력 설치비 중 터빈비용 비중: 육상 67.3%, 해상 32.9%, 부유식 23.6%

- (집적단지 조성) 해상풍력의 제조 및 운송, 설치비용 절감이 가능한 해상풍력 전용 입지발굴(배후항만 등) 및 집적단지 조성 추진
 - 두산중공업, 유니슨 등 터빈 제조기업 외에도 중소기업(부품 및 단조 등), 조선업체(플랜트, 운송 등) 등 연관산업 및 벨류 체인별 집적화
 - * 일본의 경우 이바라키현 등 총 8개 지역에 배후항만 해상풍력단지 구축 중
 - 단지조성 및 공유수면 활용 등을 위해 부처협의(국토부, 해수부) 및 규제특례 적용 추진

① 연구개발

- □ (현황) 재생에너지 간헐성 극복 등 한계돌파형 연구 지원 중
 - o 13대 혁신성장동력분야 중 신재생에너지의 범위에 재생에너지 간 헐성 극복을 위한 에너지저저장장치(ESS)가 포함됨. 투자 확대를 통한 한계 돌파형 연구 지원
 - o (핵심기술) 이차전지 핵심소재의 국산화 및 성능 고도화, 저가화 및 장수명 ESS 개발을 위한 대용량 전지부품·소재 및 시스템등 원천기술
 - o (R&D 투자 현황)
 - 2019년 ESS 특화 사업으로는 ESS기술개발사업 (산업부)이 유일: 43,702 백만원 ('17), 45,879 ('18), 36,585 ('19)
 - NTIS에서 검색되는 2019년 ESS를 키워드로 하는 국가과제는 총 315개로, 상기 ESS기술개발사업 이외의 다양한 사업에서 ESS R&D에 투자 (소재부품기술개발사업 (산업부), 개인기초연구사업 (교육부), 산학연협력기술개발사업 (중기부) 등). 이 중 에너지소 재기술 관련 34건, 에너지저장 이용기술 관련 64건

< FSS 기술개요 - Value Chain >

(출처: 녹색기술센터, 2015년 녹색기술 심층분석보고서)

- □ (개선 필요사항) 시장성/혁신성 소재의 연구개발 투자 포트폴리오 필요
 - o (Portfolio 작성) "가능성 높은 소재"와 "도전성 높은 소재"의 Two Track으로 연구개발 투자의 Portfolio 작성
 - 디바이스 입장에서는 "시장주도적 리튬이온전지 (LIB) vs. Post-LIB 전지 혹은 커패시터", 소재 입장에서는 "고함량 니켈계 양극재와 같은 가능성 높은 소재의 고도화 개발 vs. 차세대 소재에 대한 가능성 타진" 식의 연구개발 지원 Portfolio 설정
 - Post-LIB계 = 리튬메탈전고체전지, 금속공기전지, 레독스흐름전지 등
 - Portfolio 설정을 위해 기술 적합성, 시장성 등에 대한 분석이 선행되어야 함. 자원의 선택과 집중에 대한 필요성 여부 고려하여야
 - o (ESS 안전성 확보) ESS 발화 요인 제거를 위해, 체계적인 과제 구성 필요
 - (1) 발화 메커니즘 규명: 실제 운용조건에서 단전지 및 팩 수준 연구
 - (2) 소재 및 전지 관점에서의 솔루션: 발화 메커니즘을 기반으로 한 재료 및 전지의 재설계
 - (3) 운전 관리 시스템 면에서의 솔루션: BMS, PMS를 통한 안전성 확보, 상태 진단 및 고장사고 예측 기술 개발
 - (4) 운전 조건 최적화 면에서의 솔루션: 충방전 수준 설정

② 실증·시범사업

- □ (현황) 리튬이차전지는 다양한 실증 지원, 차세대 실증사업 미흡
 - o 리튬이차전지는 상용화 수준에 이르러 다양한 실증 과제가 지원되고 있음
 - 단위 에너지 밀도 및 수명 특성이 우수하여, 최근 MW급 에너지 저장시스템을 제주 스마트그리드 실증단지에 설치 운영 중임
 - 한국전력공사에서는 전라북도 고창에 28MW급 리튬이온전지 에 너지저장 시스템을 설치하여 실증연구를 진행중이며 세부 사양

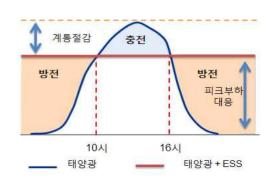
- 은 28MW ESS (PCS 4MW 7대, 배터리 1C_12MWh, 2C_2MWh, 4C_ 3MWh)와 운영시스템으로 종합운영시스템, 로컬운영시스템, ESS 제어기가 설치되어 있음
- 서울 구로산업단지에는 기존 디젤 비상발전기 대체용 ESS 응용 기술로 비상시 ESS 운영방안 제시, 평상시 경제성 제고 운영방 안 제시, 비상발전기용 ESS 설비기준 제시를 목적으로 실증 사 업이 진행되고 있음
- 이외에도 제주, 충청북도 음성 등지에서 풍력연계, 수요관리 실 증 등의 사업이 다양하게 진행중임
- o 차세대 이차전지 분야는 상대적으로 실증사업의 진행이 제한적임
 - 레독스 흐름전지 및 NANI 전지 등이 후보 시스템으로 일부 실 증이 진행되었으나 현재는 규모가 상당히 축소된 상태임
 - 차세대 이차전지의 기술이 아직 상용화 이전 단계인 기술들이 많아 실증 사업의 추진에 애로가 있음
- □ (개선 필요사항) ESS 안전성 확보 위한 발화요인 제거 체계적인 실증사업 강화
 - o 안전성 확보를 위한 체계적인 실증 사업의 진행 필요
 - 최근 일련의 ESS 화재 사건을 볼 때 제작, 설치, 운용, 관리에 대한 체계성이 부족한 것으로 판단되므로, ESS 설치/보급의 체계성을 확보하기 위한 실증을 강화해야 함.
 - 안전성 확보를 위한 소재 및 전지 제조 기술의 보완 기술 개발 진행 필요
 - o 시장 확대를 위한 시장 지향형 실증 사업의 다양성 확보
 - 실증연구개발 기술의 산업 확대를 위한 BM 및 정책 개발 필요
 - 실증 환경의 다양성 및 분석을 위하여 기술 중복성 인정
 - xEV 시장의 팽창에 따른 충전 인프라 실증 진행 필요
 - 선박 및 군수 시장 등으로의 실증 사업 확대 필요

- ESS 해외 시장 선점을 위한 국내 ESS 수출 가능 지역과의 연계 기술 개발 및 실증 추진 (현지 제도, 규정 등 고려)
- o 차세대 이차전지 실증 강화
 - 차세대 이차전지 기술개발과 실증 사업의 연계 필요
 - 상용화 이전 기술이라도 소규모 실증을 통한 이차전지 소재 및 전지 제조 기술과 실증기술 간 연계를 통한 시너지 창출 필요
 - 기술 선점을 위한 차세대 이차전지에 대한 집중 기술개발 지원 필요

③ 인프라 구축

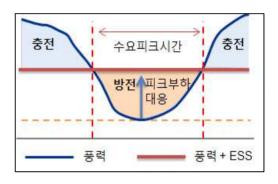
- □ (현황) 대용량 실증과 표준화가 활발한 데 반해, 시험평가 및 인증 인프라 구축 부족
 - o 대용량 전력저장장치 실증 연구, 국내외 표준화 활동은 활발하게 진행 중이나 시험 평가 및 인증 인프라 구축은 부족
 - 대용량 리튬이온이차전지, BMS, PCS 등 전력저장 분야의 전문 인력확보가 어려운 상황으로 체계적인 인력양성 필요
 - * 에너지저장시스템 신뢰성 및 안전성 평가 인프라 구축 세부 목표 설정 (국가과학기술 심의 위원회, 2014년)
 - o (시험인증 인프라) 세계적인 전력저장장치 시험인증 인프라 조성
 - 시험기관별로 특화된 기술력을 고려하여 시험평가 장비 및 시설 구축 지원
 - * 계통연계(한국전기연구원), 신재생에너지연계(에기연), 이차전지(화학융합 시험연구원) 등
 - * 시험기관, 연구소 등에 Test Bed 및 안전성·신뢰성 평가센터 구축
 - 기업-시험기관의 상호 협력관계를 구축하여 업계 보유의 시험평가 인프라를 최대한 활용
 - * 기업-시험연구소-전지산업협회 간 시험평가 협력

- o 해외전문 시험평가 인증기관과의 협력을 통한 시험평가 상호인정 방안을 마련하고 해외 전문기관의 국내 인증 인프라 구축 유도
- o (전문인력양성) 석·박사급 고급인력 및 현장 중심형 전문인력양성
 - 고급 연구 개발 인력 확보를 위한 석박사급 인력양성 추진
 - * 이차전지 대학연구센터(ITRC)('11~'14), 전력저장용 리튬이차전지 핵심소 재 고급트랙('11~'15), 고효율배터리 고급트랙('12~'16), 에너지인력양성 기초트랙('15~'19)
 - 글로벌 경쟁력을 갖출 수 있도록 핵심 연구 인력 장기 양성 추진
- □ (개선 필요사항) ESS 안전성 평가 인프라 마련과 인력양성 프로그램 다변화 필요
 - o ESS 평가 인프라 부재
 - PCS-EES 연계 종합시험설비 부재로 ESS 종합 안전성 검증 불가능
 - o ESS 안전성 검증 용량 부족
 - 제한된 용량의 배터리 안전성 평가 위주로 검증
 - 대형시스템의 화재전이시험 시설 부재
 - 해외 인증 기관에 의존하는 현실
 - o LiB는 상용화 수준에 이르러 다양한 실증 과제를 지원 및 2012년 부터는 LiB-ESS 보급화 사업이 진행되고 있으며 2014년부터는 송 배전급 ESS의 예타 사업 실증이 진행에 따라 LiB는 민간 투자 확 대 유도
 - LiB 저가화 및 성능향상은 기업 자체적으로 추진하며 차세대 LiB 기술 개발 지원 계획
 - LiB-ESS 사업화 및 수출 산업화 지원
 - 표준화 연계 기술 개발 및 시험인증 인프라 구축


< ESS 배터리의 성능/안전성 평가-표준화-에측 기술의 구성 > (출처: 한국에너지기술평가원, 청정에너지기술 로드맵, 2016년 8월)

- o ESS 인력 양성 프로그램의 다변화 및 확대 필요
 - 리튬이온전지 중심의 기존 프로그램에서 벗어나 차세대 전력저장장 치용 이차전지 및 ESS 시스템 관련으로 확대 필요
 - ESS 화재를 미연에 방지할 수 있는 시스템 조립 및 시공에 참여하는 현장 인력 및 산업인력 양성을 위한 신규 프로그램의 도입 및 운영이 필요

4 제도 개선


- □ (현황) 신재생 간헐성 극복 위해 ESS 연계 가중치 적용 중
 - o 태양광 연계 ESS 현황
 - (REC 가중치) '16.9월 REC 가중치 신설(5.0)하였고, '18년도 5.0

태양광 연계 ESS				
충전시간	방전시간	REC 가중치		
10시 ~ 16시	충전시간 이외의 시간	5.0		

- (도입 목적) 태양광 발전의 특성상 일조량이 좋은 낮에 생산된 전기를 충전하고 저녁시간에 방전을 유도하여, 낮에 최대발전으로 생기는 전력망 접속용량 부족을 완화시키고, 봄·가을·겨울의 밤에 생기는 높은 전기수요에 대응
- * 신재생발전설비의 전력망 접속 불가 용량: 521MW, 801건('16.7월기준, 한전)
- o 풍력 연계 ESS 현황
 - (REC 가중치) '14.9월 REC 가중치 신설(5.5)하였고, '18년은 4.5
 - * ('14~'15년) 5.5 → ('16년) 5.0 → ('17년) 4.5 → ('18년) 4.5

풍력 연계 ESS				
충전시간	REC 가중치			
제 한없음	(봄)9-12시 (여름)13-17시 (가을)18-21시 (겨울)9-12시	4.5		

- (도입 목적) 신재생에너지의 간헐성 보완, 전력피크 부하에 대응
- □ (개선 필요사항) 태양광+ESS 시스템 경부하 시간 방전하는 한계 개선 필요
 - o 태양광+ESS의 경우 전력피크 시간에 기여하지 못하고 오히려 경 부하 시간에 방전하고 있는 한계점 존재
 - 당초 도입목적인 계통절감 효과가 불확실하고, 전력피크 저감은 태양광이 갖고 있는 특성상 어려운 측면이 있어 개선 필요

1. 다부처 협력 과제(안)

- □ 태양광, 풍력, ESS 분야의 부처간 협력 주제(안) 8개 도출(주제별 필요성 및 사업 내용은 [붙임2] 참조)
 - o (태양광) 건물형, 모빌리티, 농촌형, 수소 생산 연계 주제 도출
 - 국민 수용성 향상된 건물형 태양광 핵심기술 및 제품 개발
 - * (목적) 건물형 태양광의 수용성 제고를 위한 디자인, 안전 및 설치 방법 이 향상된 제품 개발과 이를 통한 신시장 창출. 보급 확대에 기여
 - * (부처별 역할)

참여부처명	역할		
과기부	건물형 태양광 제품 개발을 위한 차세대 소재 등 원천 핵심기술 확보		
산업부	건물형 태양광 제품 개발 및 디자인/안전성/경제성 확보		

- 모빌리티형 태양광 핵심기술 및 제품 개발
 - * (목적) 드론 및 무인항공기와 우주산업 분야에 적용할 수 있는 제품 개발 과 이를 통한 신시장 창출, 보급 확대 기여
 - * (부처별 역할)

참여부처명	역할			
과기부	모빌리티형 제품 개발을 위한 차세대 소재 등 원천 핵심기술 확보			
산업부	모빌리티형 제품 개발 및 디자인/안전성/경제성 확보			

- 농촌형 태양광 핵심기술 및 제품 개발
 - * (목적) 농촌형 태양광 분야에 적용할 수 있는 제품 개발과 보급 설치를 통한 신시장 창출 및 이를 통한 농가소득 증진
 - * (부처별 역할)

참여부처명	역할		
산업부	농촌형 태양광 제품 개발 및 안전성/경제성/계통연계성 확보		
농림축산식품부	농촌형 태양광 제품 개발 수용성 확대/보급확대/제도지원 확대		

- 태양광발전 기반 수소 직접 생산 핵심기술 및 제품 개발
 - * (목적) 태양광을 이용하여 수소를 직접 생산할 수 있는 제품 개발과 보급 설치를 통한 신시장 창출
 - * (부처별 역할)

참여부처명	역할		
과기부	수소 직접 생산을 위한 태양광 소자 및 촉매전극 핵심원천 기술 확보		
산업부	수소 생산 시스템 개발 및 안전성/경제성 확보, 보급 확대		

- o (풍력) 차세대 초대용량/부유식 풍력발전시스템 및 풍력-지역난방 시스템 주제 도출
 - 20MW급 초대용량 초대형 풍력발전시스템 개발
 - * (목적) 해상풍력터빈 초대형화 원천기술 개발을 통해 LCOE를 저감하고, 신개념 풍력터빈 확보를 통해 차세대 핵심기술 선점
 - * (부처별 역할)

참여부처명	역할			
과기부	20MW급 초대형 풍력터빈 개념 연구 및 원천기술 확보			
산업부	20MW급 초대형 풍력터빈 시제품 개발 및 실증을 통한 신뢰성 확보			

- Renewable Power to Heat 풍력발전을 이용한 지역난방 시스템 개발
 - * (목적) 열에너지의 저장 용이성을 활용하여 재생에너지 간헐성 문제를 해결 하고, 나아가 수요를 건물에너지로 확대하여 출력제한에 대응
 - * (부처별 역할)

참여부처명	역할				
과기부	AI를 이용한 풍력발전량 및 건물 에너지수요 예측 및 축열시스템 원천기술 개발				
국토부	재생에너지 활용 건물 냉난방 설계기준 연구				
산업부	풍력발전을 이용한 지역난방공급 시스템을 실증하고 관련 제도(REC) 개선				

- 대용량 부유식 풍력발전시스템 개발
 - * (목적) 부유식 해상풍력발전시스템 상용화를 위한 기술개발을 수행하고 신 재생에너지 사업화 확대 및 차세대 핵심기술 선점
 - * (부처별 역할)

참여부처명	역할			
산업부	부유식 적용을 위한 대형 풍력터빈 설계, 시제품 제작, 성능검증			
해수부	부유체 설계 및 해석, 제작, 실해역 시험기술 개발			

- o (ESS) 분산전원 대용량 전력공급시스템 주제 도출
 - 분산전원 기반 에코커뮤니티용 대용량 전력저장·공급 시스템 개발
 - * (목적) 전력망 증설 없이 기존 전력망에 신재생에너지 연계 ESS를 추가 하고 동시에 다수의 EV를 고속충전 할 수 있는 대용량 충전시스템 개발
 - * (부처별 역할)

참여부처명	역할
과기부	대용량/고출력/급속충전이 가능한 차세대 전지 원천기술 개발
산업부	신재생E 연계 ESS 활용 DC-link EV 동시충전시스템 개발

붙임1

신재생에너지 추진단 위원 명단

	구성				W T
	구분	소속기관	직 책	성명	비고
	정부	산업부	재생에너지산업과장	심진수	
	정부	과기정통부	원천기술과장	김민표	
	민간	신재생에너지학회	학회장	진우삼	추진단장
	공공	한국연구재단	에너지·환경 단장	이상협	
정책	공공	한국에너지기술평가원	신재생기획실장	기성섭	
협의회	공공	한국에너지기술연구원	기후기술전략센터장	박민희	
	공공	한국에너지공단	신재생정책실장	김성훈	
	민간	고려대학교	신소재공학과 교수	김동환	
	민간	울산대학교	조선해양공학부 교수	신현경	
	CPO	한국특허전략개발원	특허전문위원	정장호	(특허청 추천)
TI 0I	공공	한국에너지기술평가원	신재생기획실 팀장	이창구	간사
지원 조직	공공	한국에너지공단	신재생정책실 차장	서지원	
(사무	공공	한국에너지기술연구원	태양광 연구실 선임연구원	이정인	
기구)	공공	한국연구재단	에너지환경단 담당	문경은	
	민간	신성이엔지	재생에너지사업부 부장	홍근기	분과장
	민간	성균관대학교	전기전자공학부 교수	이준신	
태양광 분과	민간	한화큐셀코리아	R&D센터 상무	홍정의	
<u>E</u> - 1	공공	한국전자통신연구원	ICT소재연구그룹 책임	정용덕	
	공공	한국에너지기술연구원	신재생에너지연구소장	윤재 호	
	공공	전력연구원	에너지신산업연구소 부장	강금석	분과장
	공공	한국에너지공단	태양광풍력사업실 팀장	김상준	
풍력 분과	민간	광운대학교	전기공학과 교수	송승호	
<u>E</u> =1	민간	유니슨	연구소장	방조혁	
	민간	두산중공업	풍력기술개발팀 수석	이정훈	
	공공	한국과학기술연구원	에너지저장연구단	정경윤	분과장
ESS	공공	한국전기연구원	차세대전지연구센터장	이상민	
분과	민간	울산과학기술원	에너지·화학공학부 교수	송현곤	
	민간	SK이노베이션	실장	선희영	

[※] 추진단 위원 명단은 진행 상황에 따라 변동 가능

붙임2 다부처 협력 과제(안) 개요서

[태양광 - 국민 수용성 향상된 건물형 태양광 핵심기술 및 제품 개발]

□ 사업 목적

건물형 태양광의 수용성 제고를 위한 디자인, 안전 및 설치 방법이 향상된 제품 개발과 이를 통한 신시장 창출, 보급 확대에 기여

□ 다부처 협력 필요성

- 본 주제는 차세대 시장창출을 위한 원천기술 확보부터 건물 적용
 제품 개발, 표준화, 상용화까지 넓은 스펙트럼 추진이 필요
 - 제품 개발 중심의 R&D는 수용성 극복에 한계가 있었으며, 다색 구현 또는 고성능의 소재 등 핵심기술 확보를 동시에 추진 필요

□ 사업 내용

- (주요 개념) 태양광 시스템을 건물에 적용하기 위한 소재 등 원천 핵심기술과 디자인, 안전성, 경제성이 확보된 제품 개발, 표준화 등 관련 연구개발 지원
 - (과기부) 생활 수용성 확대를 위한 차세대 건물 적용 태양전지 제조 원천기술 개발
 - (산업부) 다양한 건자재 적용 가능한 심미성, 초경량, 안전성 확보 기술과 결정질실리콘 기반 Glass-free 건물 외장재 제품 개발, 표준화 추진

참여부처명	역할			
과기부	건물형 태양광 제품 개발을 위한 차세대 소재 등 원천 핵심기술 확보			
산업부	건물형 태양광 제품 개발 및 디자인/안전성/경제성 확보			

[태양광 - 모빌리티형 태양광 핵심기술 및 제품 개발]

□ 사업 목적

드론 및 무인항공기와 우주산업 분야에 적용할 수 있는 제품 개발과 이를 통한 신시장 창출, 보급 확대 기여

□ 다부처 협력 필요성

- 본 주제는 차세대 시장창출을 위한 원천기술 확보부터 모빌리티형
 제품 개발, 표준화, 상용화까지 넓은 스펙트럼 추진이 필요
 - 제품 개발 중심의 R&D는 수용성 극복에 한계가 있었으며, 자동차, 드론, 무인항공기 등에 적용할 수 있는 핵심기술 확보를 동시에 추진 필요

□ 사업 내용

- (주요 개념) 태양광 시스템을 모빌리티에 적용하기 위한 소재 등 원 천 핵심기술과 디자인, 안전성, 경제성이 확보된 제품 개발, 표준화 등 관련 연구개발 지원
 - (과기부) 모빌리티에 적용 가능한 차세대 태양광 제조 원천기술 개발
 - **(산업부)** 모빌리티에 적용 가능한 초경량 모듈 및 안전성 확보 기술과 표준화 추진
- ㅇ (부처별 역할)

참여부처명	역할			
과기부	모빌리티형 제품 개발을 위한 차세대 소재 등 원천 핵심기술 확보			
산업부	모빌리티형 제품 개발 및 디자인/안전성/경제성 확보			

[태양광 - 농촌형 태양광 핵심기술 및 제품 개발]

□ 사업 목적

○ 농촌형 태양광 분야에 적용할 수 있는 제품 개발과 보급 설치를 통한 신시장 창출 및 이를 통한 농가소득 증진

□ 다부처 협력 필요성

- 본 주제는 차세대 시장창출을 위한 핵심기술 확보부터 농촌형 태양 광 개발, 표준화, 상용화, 보급 확대까지 넓은 스펙트럼 추진이 필요
 - 제품 개발 중심의 R&D는 수용성 극복에 한계가 있었으며, 농촌 에 적용할 수 있는 핵심기술 확보와 함께 제도개선 추진 필요

□ 사업 내용

- (주요 개념) 농촌에 적용할 수 있는 태양광 시스템을 위한 소재 및
 소자 등 핵심기술과 디자인, 안전성, 경제성이 확보된 제품 개발, 표준화 등 관련 연구개발 지원
 - **(산업부)** 공간 공유가 가능한 초경량 태양광 소재 및 내구성 확 보 기술과 설치 및 시공이 간단한 제품 개발, 표준화 추진
 - (농림축산식품부) 농촌 수용성 확대를 위한 보급 확대 및 제도 지원, 이익 공유 모델 구축 및 확산

참여부처명	역할		
산업부	농촌형 태양광 제품 개발 및 안전성/경제성/계통연계성 확보		
농림축산식품부	농촌형 태양광 제품 개발 수용성 확대/보급확대/제도지원 확대		

[태양광 - 태양광발전 기반 수소 직접 생산 핵심기술 및 제품 개발]

□ 사업 목적

이 태양광을 이용하여 수소를 직접 생산할 수 있는 제품 개발과 보급 설치를 통한 신시장 창출

□ 다부처 협력 필요성

- 본 주제는 태양광을 이용하여 수소를 직접 생산할 수 있는 핵심기 술 확보부터 안정성 확보 및 보급 확대까지 넓은 스펙트럼 추진이 필요
 - 핵심원천 기술개발 중심의 R&D 뿐만 아니라 시스템 개발을 통한 보급은 수용성 극복 문제가 있어, 핵심기술 확보 및 동시에 제도개선 추진 필요

□ 사업 내용

- (주요 개념) 태양광 소자로 생산된 전기를 이용, 물 분해 반응으로 청정 연료인 수소로 직접 전환하는 핵심원천 기술과 안전성, 경제성 이 확보된 제품 개발, 표준화 등 관련 연구개발 지원
 - (과기부) 수소 직접 생산을 위한 태양광 소자 및 촉매 전극 핵 심원천 기술 확보
 - **(산업부)** 수소 생산 시스템 개발 및 안전성/경제성 확보, 보급 확대 및 표준화 추진

참여부처명	역할		
과기부	수소 직접 생산을 위한 태양광 소자 및 촉매전극 핵심원천 기술 확보		
산업부	수소 생산 시스템 개발 및 안전성/경제성 확보, 보급 확대		

[풍력 - 20MW급 초대용량 초대형 풍력발전시스템 개발]

□ 사업 목적

o 해상풍력터빈 초대형화 원천기술 개발을 통해 LCOE를 저감하고, 신개념 풍력터빈 확보를 통해 차세대 핵심기술 선점

□ 다부처 협력 필요성

- o 현재 EU에서는 Innwind 프로젝트를 통해 20MW급에 대한 가능성을 연구 중이나, 국내에서는 시도된 적 없어 원천기술 조기 확보를 통한 기술격차 해소 필요
 - 초대형화에 따라 날개의 크기, 터빈의 무게 등 현실적인 한계를 돌파하고 구조적 안전성을 확보할 수 있는 신개념 도입 필요

□ 사업 내용

- (주요 개념) 초대형 풍력터빈의 구현을 위해 현실적 한계를 돌파할
 수 있는 신개념 풍력터빈 개념설계, 원천기술 확보, 시제품 제작 및
 실증 등 관련 연구개발 지원
 - (과기부) 20MW급 초대형 풍력터빈 구현을 위한 적용 가능 기술 조사, 개념 연구 및 원천기술 개발
 - (산업부) 20MW급 초대형 풍력터빈 상세설계, 시제품 제작, 성능 검증 및 실증
- ㅇ (부처별 역할)

참여부처명	역할				
과기부	20MW급 초대형 풍력터빈 개념 연구 및 원천기술 확보				
산업부	20MW급 초대형 풍력터빈 시제품 개발 및 실증을 통한 신뢰성 확보				

[풍력 - Renewable Power to Heat 풍력발전을 이용한 지역난방 시스템 개발]

□ 사업 목적

9 열에너지의 저장 용이성을 활용하여 재생에너지 간헐성 문제를 해결하고, 나아가 수요를 건물에너지로 확대하여 출력제한에 대응

□ 다부처 협력 필요성

 본 주제는 AI를 이용한 풍력발전 및 냉난방수요 예측 및 축열시스템 개발, 건물 에너지 설계기준 마련 등 원천기술 확보부터 제도개선, 보급 확대까지 다부처 협력이 필요한 사업

□ 사업 내용

- (주요 개념) 풍력발전을 활용하여 인근지역 건물에 지역난방을 공급할 수 있도록 인공지능을 통하여 풍력발전량과 건물 냉난방에너지수요를 예측하고, 이에 반응하는 축열시스템 및 지역난방시스템 설계, 시스템 제작 및 실증 등과 관련한 연구개발 지원
 - (과기부) AI를 통하여 실시간 풍력발전량과 건물 냉난방수요량을 예측하고 이에 반응하는 축열시스템 연구와 원천기술 개발
 - (국토부) RE to Heat에 부합하는 건축물 에너지설계 및 제도개선
 - (산업부) 풍력발전 이용 지역난방시스템 제작, 실증 및 제도개선

참여부처명	역할				
과기부	AI를 이용한 풍력발전량 및 건물 에너지수요 예측 및 축열시스템 원천기술 개발				
국토부	재생에너지 활용 건물 냉난방 설계기준 연구				
산업부	풍력발전을 이용한 지역난방공급 시스템을 실증하고 관련 제도(REC) 개선				

[풍력 - 대용량 부유식 풍력발전시스템 개발]

□ 사업 목적

수유식 해상풍력발전시스템 상용화를 위한 기술개발을 수행하고 신 재생에너지 사업화 확대 및 차세대 핵심기술 선점

□ 다부처 협력 필요성

- o 해외에서 부유식 풍력발전 실증과 함께 상용화 단지 계획이 수립되고 있으며 초대형 풍력발전시스템 개발을 통해 부유식 해상풍력 LCOE 저감이 가속화되어 다양한 부유체 연구가 진행 중
- 부유식 해상풍력은 기존 고정식 풍력발전시스템 기술 고도화와 함께 부유체 관련 기술이 필요하며, 전체 시스템을 해상에서 시험하여 신뢰성을 증명하여야 상용화 가능함

□ 사업 내용

- (주요 개념) 대용량 부유식 풍력발전시스템을 개발하고 이를 해상에서 실증함으로써 상용화 가능한 부유식 풍력발전시스템을 개발하고 이를 이용한 시범사업 발굴
 - **(산업부)** 부유식 적용을 위한 대형 풍력터빈 설계, 시제품 제작, 성능검증
 - (해수부) 부유체 설계, 제작 및 실해역 시험기술 개발

참여부처명	역할			
산업부	부유식 적용을 위한 대형 풍력터빈 설계, 시제품 제작, 성능검증			
해수부	부유체 설계 및 해석, 제작, 실해역 시험기술 개발			

[ESS - 분산전원 기반 에코커뮤니티용 대용량 전력저장·공급 시스템 개발]

□ 사업 목적

o 전력망 증설 없이 기존 전력망에 신재생에너지 연계 ESS를 추가하고 동시에 다수의 EV를 고속충전 할 수 있는 대용량 충전시스템 개발

□ 다부처 협력 필요성

 본 주제는 시장성 있는 차세대 전지 기반 대용량 ESS 원천기술 및 신재생에너지 연계 기술 개발과 이를 기반으로 한 EV 다중 급속 충전 시스템의 개발 및 실증 적용을 위한 부처 협력 필요

□ 사업 내용

- (주요 개념) 농어촌/도서 지역의 기존 디젤 발전기 사용을 최소화하고 신재생에너지 기반의 안정적 전력 공급을 위한 대용량 ESS 시스템개발과 모빌리티 활용성 확대 모델 개발
 - (과기부) ESS 비용 절감을 위한 대용량/고출력/급속충전이 가능한 차세대 전지(비리튬계, 전고체, 레독스플로우 등) 원천기술 개발
 - (산업부) 신재생에너지 연계 ESS 활용 EV 충전기에 DC로 전력을 공급하여 효율을 높이는 하이브리드 시스템 또는 DC-link EV 동시충전시스템 개발

참여부처명	역할			
과기부	대용량/고출력/급속충전이 가능한 차세대 전지 원천기술 개발			
산업부	신재생E 연계 ESS 활용 DC-link EV 동시충전시스템 개발			

[부록]

추진단 운영 회의 계획안 및 결과보고

- 1. (5.21일) 혁신성장동력 신재생에너지 추진단 착수회의 계획(안)
- 2. (7.25일) 혁신성장동력 신재생에너지 추진단 협의회의 계획 보고
- 3. (10.1일) 혁신성장동력 신재생에너지 추진단 착수회의 계획(안)
- 4. (10.1일) 혁신성장동력 신재생에너지 추진단 착수회의 결과
- 5. (11.13일) 신재생학회 연계 신재생에너지 추진단 중간회의 계획(안)
- 6. (12.2~5일) 혁신성장동력 신재생에너지 추진단 분과회의 계획보고
- 7. (12.16일) 혁신성장동력 신재생에너지 추진단 보고서 중간 검토 회의 계획보고
- 8. (12.16일) 혁신성장동력 신재생 추진단 보고서 중간 검토회의 결과

[1] 혁신성장동력 신재생에너지 추진단 착수회의 계획(안)

□ 회의 목적

- o 정부에서 추진 중인 혁신성장동력 13대 분야 중 신재생에너지 분야의 정책 목표 달성을 위한 추진체계(추진단) 운영
 - * 관련근거: 관계부처 합동, 혁신성장동력 시행계획(2018.5.28.)
- o 추진단 지원조직(사무기구)이 참석한 착수회의를 통해 향후 추진단 운영계획 협의 및 다부처공동기획사업 발굴 관련 논의

□ 회의 개요

- ㅇ (일시) '19. 5. 21.(화), 13:00 ~
- ㅇ (장소) 한국에너지기술평가원 7층 회의실
- o (참석 대상) 에기평, 에공단, 에기연, 연구재단 등 추진단 지원조직 담당자 10명 내외
- ㅇ (논의 내용)
 - 1) 혁신성장동력 신재생에너지 추진단 운영계획('19.5월~12월)
 - 2) 신재생 분야 다부처공동기획사업 발굴

□ 세부 일정

시 간	내 용	비고
13:00 ~ 13:10	회의배경 및 추진단 개요 설명	에기평 태양광기획팀장
13:10 ~ 14:00	신재생에너지 추진단 운영계획 협의	참석자 전원
14:00 ~ 15:00	신재생 분야 다부처공동기획사업 발굴	참석자 전원

[※] 회의 당일 사정에 따라 상기 일정은 변동 가능

[2]

"청렴한 당신이 미래의 에너지입니다"

한국에너지기술평가원

수 신: 내부 결재

(경유)

제 목: 혁신성장동력 신재생에너지 추진단 협의회의 계획 보고

- 1. 관련근거
 - o 신재생기획실-107(2019.05.10.) "혁신성장동력 기획·관리 및 운영사업 위탁과제계약체결(한국에너지기술평가원/이창구)"
- 2. 위와 관련하여, 신재생에너지 분야 추진체계(추진단) 운영을 위한 지원조직 협의 회의를 다음과 같이 개최하고자 하오니 결재하여 주시기 바랍니다.

- 다 음 -

가. 회 의 명: 혁신성장동력 신재생에너지 추진단 협의회의

나. 일 시: 2019년 7월 25일 목요일 10:30~

다. 장 소: 한국에너지기술평가원 2층 회의실

라. 참 석 자: 에기평, 에기연 등 추진단 지원조직 담당자 10명 내외

마. 내 용: 진행사항 공유, 향후 일정 조율 등

바. 소요예산: 총 300천원

1) 사용회계 : 혁신성장동력신재생에너지추진단운영/회의운영비

2) 세부내용 : (회의운영비) 30천원 × 10명 = 300천원. 끝.

[원 **오건웅** 실장 기성섭

협조자

시행 신재생기획실-290 2019.07.25

접수

우 06175 서울특별시 강남구 테헤란로114길 14 (대치동, 한국에너지기술평가원) / http://www.ketep.re.kr 전화 02-3469-8338 전송 02-555-2430 / 5gun@ketep.re.kr / 비공개 5

부패/공익/예산낭비/청탁금지/갑질피해 신고센터(www.kbei.org/helpline/ketep)

[3] 혁신성장동력 신재생에너지 추진단 착수회의 계획(안)

□ 회의 목적

관계부처, 공공기관, 민간 공동 협력체계(추진단)를 통해 신재생에너지 사업의 유기적인 협력과 정책목표 달성을 이루고자 하며,
 이를 위해 추진단 운영 전략과 방안을 수립하기 위함

□ 회의 개요

- ㅇ (일시) 2019. 10. 1.(화), 13:30 ~ 15:00
- ㅇ (장소) 대전세종연구원 회의실
- (참석 대상) 신재생에너지 추진단 정책협의회(산업부, 과기부 포함),분과장, 지원조직 및 에기평 담당자 등 20명 내외
- ㅇ (회의 진행)
 - 신재생에너지 주요 정책 및 이슈, 추진단 운영계획(안) 발표 후 참석 위원의 추진단 운영전략에 대한 의견 수렴
 - 각 분과별 역할, 운영방안, 일정 및 결과물 도출 논의

□ 세부 일정

시 간		내 용	비 고 (발표자)
13:30 ~ 13:40 '10 인사말씀		인사말씀	산업부, 과기부, 추진단장
13:40 ~ 14:10	3:40 ~ 14:10 '30 신재생에너지 기술개발 추진방향 (추진단 운영계획(안))		에기평 신재생기획실
14:10 ~ 15:00	'50	추진단 운영전략에 대한 토론	참석위원 전체

[※] 회의 당일 사정에 따라 상기 일정과 장소는 변동 가능

[4] 혁신성장동력 신재생에너지 추진단 착수회의 결과

□ 회의 목적

관계부처, 공공기관, 민간 공동 협력체계(추진단)를 통해 신재생에너지 사업의 유기적인 협력과 정책목표 달성을 이루고자 하며,
 이를 위해 추진단 운영 전략과 방안을 수립하기 위함

□ 회의 개요

- ㅇ (일시) 2019. 10. 1.(화), 13:30 ~ 15:00
- ㅇ (장소) 대전세종연구원 회의실
- o (참석자) 신재생에너지 추진단 정책협의회와 분과장, 지원조직 및 에기평 담당자 등 20명 내외
- ㅇ (회의 진행)
 - 신재생에너지 주요 정책 및 이슈, 추진단 운영계획(안) 발표 후 참석 위원의 추진단 운영전략에 대한 의견 수렴
 - 각 분과별 역할, 운영방안, 일정 및 결과물 도출 논의

□ 세부 일정

시 간		내 용	비 고 (발표자)
13:30 ~ 13:40	3:30 ~ 13:40 '10 인사말씀		추진단장
13:40 ~ 14:10	~ 14:10 '30 신재생에너지 기술개발 추진방향 (추진단 운영계획(안))		에기평 신재생기획실
14:10 ~ 15:00	'50	추진단 운영전략에 대한 토론	참석위원 전체

□ 회의 결과

- ㅇ (추진단 역할)
 - 혁신성장동력 발굴·육성을 위한 기획, 협의체 운영을 통해 정책목표 달성에 기여 필요
 - 범부처 연계 추진체계로서 신재생에너지 사업의 시너지를 낼 수 있는 전략 수립이 중요
 - 추진단의 주안점은 부처간 연계 가능한 주제(과제) 발굴에 있음

ㅇ (운영 방안)

- 태양광/풍력/ESS 분야의 핵심이 무언지 논의·정리하는 기회로 활용
- 목표를 감안하여 분석 대상과 현황을 점검할 필요
- 보급 연계 과제는 에기평 융합기획실에서 운영 중인 에너지공단 과의 협의체 내용 기반으로 논의 가능
- 단순 자문회의보다 정부 부처가 참여한 정식 협의체로서 추진단 운영·유지 고민해 볼 필요

0 (기타 의견)

- 제4차 에너지기술개발계획을 추진단에서 공유할 필요가 있으며, 신재생에너지학회 학술대회 활용 제안
- 산업계 니즈를 담을 필요가 있으며, 태양광 분과장(現 이준신 교수)은 다른 분이 맡는 것을 제안

□ 향후 계획

- o 신재생에너지학회 추계학술대회 중 추진단 연계 행사 및 분과별 회의 추진(11.13일 예정)
 - 다부처 또는 보급 연계 가능 기획과제 발굴, 정책 개선사항 수렴
- ㅇ 지원조직 중간 점검회의 개최(11월 중순)
 - 기획과제 발굴안과 현황 및 정책 개선사항 내용 정리

[붙임1] 착수회의 참석자

구분	소 속	부서 및 직책	성 명
	신재생에너지학회	학회장	진우삼
	한국에너지기술평가원	신재생기획실장	기성섭
정책 협의회	한국에너지기술연구원	기후기술전략센터장	박민희 (최상진 연구전략본부장 대참)
	한국에너지공단	신재생정책실장	김성훈
	고려대학교	신소재공학과 교수	김동환
	울산대학교	조선해양공학부 교수	신현경
ᆸᆌᅎ	성균관대학교	전기전자공학부 교수	이준신
분과장	한전 전력연구원	에너지신산업연구소 부장	강금석
		신재생기획실	이창구
	한국에너지기술평가원		서재영
지원 조직 (사무 기구)			박아름
	한국연구재단	에너지환경단 담당	문경은
	한국에너지공단	신재생정책실 차장	서지원
	한국에너지기술연구원	태양광연구실 선임연구원	이정인

[붙임2] 착수회의 사진

[5] 신재생혁회 연계 신재생에너지 추진단 중간회의 계획연

□ 추진 목적

 신재생에너지학회 추계학술대회와 연계하여 정부 R&D 추진전략을 공유하고, 혁신성장동력 신재생에너지 추진단의 분야별 현황 점검 및 다부처/보급 연계 과제 발굴 추진

□ 추진 개요

- ㅇ (일 시) '19. 11. 13일(수) 13시 ~ 11. 14일(목) 11시
- (장 소) 메종글래드 제주 아메티스트 I 회의실 등
- (참석자) 에너지R&D 산·학·연 전문가, 추진단 위원 및 지원조직 담당자 등
- ㅇ (내 용)
 - R&D 보급/사업화 성공 우수사례 공유
 - 신재생에너지 추진단 분야별 다부처/보급 연계 과제 발굴 논의

□ 세부 일정(안) (11.13~14일)

ㅇ 13시부터 진행되는 학회 Opening 세션 참석 후 추진단 회의 진행

	시 간		내 용	비고			
11. 13. (介)	신재생에너지 추진단 분과별 회의						
	16:20 ~ 16:	50 30'	R&D-보급/사업화 성공 우수사례 공유	신성이엔지, 유니슨 등 (* 학회 상황에 따라 변경 기능)			
	16:50 ~ 17:	30 40'	다부처/보급연계 과제 발굴 및 정책 개선사항 분과별 회의				
	17:30 ~ 18:0	00 30'	참석자 토론	-			
11. 14. (목)	신재생에너지 추진단 중간 결과 정리						
	09:00 ~ 09:	50 50'	분야별 다부처/보급연계 과제 발굴 결과 정리 및 자문	추진단 위원 등 관련 전문가			
	09:50 ~ 10:	30 40'	참석자 토론 및 향후일정 협의	_			
	10:30 ~ 11:0	00 30'	참석자 토론	-			

[※] 당일 행사 사정에 따라 일정은 변동 가능

[6]

"청렴한 당신이 미래의 에너지입니다"

한국에너지기술평가원

수 신: 내부 결재

(경유)

제 목: 혁신성장동력 신재생에너지 추진단 분과회의 계획보고

- 1. 관련근거
 - 신재생기획실-374호(2019.9.25.), "혁신성장동력 신재생에너지 추진단 운영(안) 및 착수회의 계획보고"
- 2. 위와 관련 혁신성장동력 발굴을 위한 신재생에너지 추진단 분과회의를 다음과 같이 개최하고자 하오니 결재하여 주시기 바랍니다.

- 다 음 -

ㅇ 회 의 명: 혁신성장동력 신재생에너지 추진단 분과회의

ㅇ 일 시: 2019. 12. 2.(월) ~ 12. 5.(목)

- (풍력) 12.2일 13시, (ESS) 12.5일 11시

ㅇ 장 소: 에기평 회의실

ㅇ 참 석 자: 추진단 분과위원 및 에기평/지원조직 담당자 등

ㅇ 소요예산: 총 2.820천원

- 회계명: 혁신성장동력신재생에너지추진단운영(전력)(정부수탁사업비)

- 과목명: 관)사업관리비 항)연구활동비, 연구과제추진비 목)전문가활용비, 회의운영비

구	분	산정기준(천원)	금액(천원)
	전문가 수당	200×5인×1회	1,600
전문가활용비	인군가 구멍 	200×3인×1회	
	참석 여비	100×8인×1회	800
회의운영비	회의비	30×7인×2회	420
총 계		_	2,820

끝.

팀원 **서재영** 실장 기성성

현조자

시행 신재생기획실-489 2019.11.29

접수

우 06175 서울특별시 강남구 테헤란로114길 14 (대치동, 한국에너지기술평가원) / http://www.ketep.re.kr 전화 02-3469-8335 전송 02-555-2430 / jaywhyseo@ketep.re.kr / 비공개 5

부패/공익/예산낭비/청탁금지/갑질피해 신고센터(www.kbei.org/helpline/ketep)

[7]

"청렴한 당신이 미래의 에너지입니다"

한국에너지기술평가원

수 신:내부 결재

(경유)

제 목: 혁신성장동력 신재생에너지 추진단 보고서 중간 검토회의 계획보고

1. 관련근거

○ 신재생기획실-374호(2019.9.25.), "혁신성장동력 신재생에너지 추진단 운영(안) 및 착수회의 계획보고"

2. 위와 관련 혁신성장동력 발굴을 위한 신재생에너지 추진단 보고서 중간 검토회의를 다음과 같이 개최하고자 하오니 결재하여 주시기 바랍니다.

- 다 음 -

ㅇ 회 의 명: 혁신성장동력 신재생에너지 추진단 보고서 중간 검토회의

ㅇ 일 시: 2019. 12. 16.(월) 16시~

ㅇ 장 소: 에기평 2층 회의실

ㅇ 참 석 자: 추진단 분야별 위원 및 외부 전문가, 에기평 담당자 등 10명 내외

ㅇ 소요예산: 총 1,800천원

- 회계명: 혁신성장동력신재생에너지추진단운영(전력)(정부수탁사업비)

- 과목명: 관)사업관리비 항)연구활동비. 연구과제추진비 목)전문가활용비. 회의운영비

구	분	산정기준(천원)	금액(천원)
전문가활용비	전문가 수당	200×5인×1회	1000
[신문/[필융미 	참석 여비	100×5인×1회	500
회의운영비	회의비	30×10인×1회	300
총	· 계	_	1,800

끝.

팀원 서재영

전결 12/16 실장 기세세

현조자

시행 신재생기획실-505 2019.12.16

접수

우 06175 서울특별시 강남구 테헤란로114길 14 (대치동, 한국에너지기술평가원) / http://www.ketep.re.kr 전화 02-3469-8335 전송 02-555-2430 / jaywhyseo@ketep.re.kr / 비공개 5

부패/공익/예산낭비/청탁금지/갑질피해 신고센터(www.kbei.org/helpline/ketep)

[8] 혁신성장동력 신재생 추진단 보고서 중간 검토회의 결과

1. 회의 개요

ㅇ 목 적 : 혁신성장동력 신재생 추진단 보고서 중간 검토

ㅇ 일 시 : 2019. 12. 16.(월) 16:00 ~ 18:00

ㅇ 장 소 : 에기평 2층 회의실

ㅇ 참석자 : (추진단 위원) 신성이엔지 홍근기 부장, 유니슨 방조혁

연구소장, (외부 전문가) 윕스 김소희 선임, 집현 이한슬전임, (에기평) 기성섭 실장, 이창구, 오정환 팀장, 서재영,

박아름, 오건웅, 서지현 연구원

2. 회의 결과

① 태양광 분야 보고서 중간 검토

- 기술개발 부분 산업화 촉진 및 미래 핵심기술 방향에서 주요 과제 중심으로 내용 정리 필요
- 제도 개선과 보급 확대 부분 "경쟁력 강화방안" 내용 포함하고 공단 협조 통해서 내용 보완 필요
- ㅇ 전체적으로 글이 많아 표 등 도식화해 내용 표현하는 방안 강구

② 풍력 분야 보고서 중간 검토

- 부유식 해상풍력 계획, 배후 항만 및 생산·조립단지 관련 비어있는 부분 추가 작성
- 각 부분 표 등을 통해 현황을 도식화한 내용은 잘 작성되었으며,제도 개선과 보급 확대 부분 공단 협조 통해 내용 보완 필요
- o 풍력 분야 정부 정책 관련 R&D 계획, 목표 등 내용과 차이가 있는 부분 정합성 맞출 수 있도록 보완 필요

③ ESS 분야 보고서 중간 검토

작가 중 비어 있는 부분 추진단 위원 통해 작성하고, 정부 정책중 에너지 저장 관련 내용에 정합성 맞추도록 보완

주 의

- 1. 이 보고서는 한국과학기술기획평가원에서 위탁받아 수행한 연구 보고서입니다.
- 2. 이 보고서 내용을 발표할 때에는 반드시 한국과학기술기획 평가원의 연구결과임을 밝혀야 합니다.
- 3. 국가과학기술 기밀유지에 필요한 내용은 대외적으로 발표 또는 공개하여서는 아니 됩니다.