혁신정책

「OECD Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research」의 주요 내용 및 시사점

KISTEP 과학기술정책센터 정하선 · 심정민

『OECD Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research』의 주요 내용 및 시사점

(2023.9.21., 과학기술정책센터 정하선, 심정민)

1 검토 배경

- □ 지난 9월 13일 정부는 '제20차 비상경제민생회의 겸 대한민국 초거대 인공지능(AI) 도약 회의'를 통해 '전국민 AI 일상화 실행계획'을 발표
 - O 초거대 AI 등장으로 AI는 기술적 변곡점에 도달하였으며, 우리 일상과 경제·사회 전반의 판을 흔드는 디지털 지각변동의 중심으로 자리매김
 - O 이에, 정부는 범부처 역량을 결집하여 AI를 일상, 일터, 공공에 접목하고 AI 문해력 제고 및 AI 윤리·신뢰성을 확보하여 국민의 삶의 질 제고 및 AI 산업의 경쟁력을 제고
- □ AI가 창출한 독창적이며 창의적인 결과는 새로운 게임 체인저로서 전방위적으로 활용될 것으로 보이며, 이는 과학기술계 및 연구현장에도 큰 영향을 미칠 전망
 - O 과학기술적 측면에서 AI는 연구 대상이 되기도 하지만, 연구속도의 향상 및 통찰력 제고 등 연구 생산성 제고를 위한 수단으로도 활용
 - O Elsevier의 글로벌 연구 프로젝트인 Research Futures 2.0 보고서에 따르면, 47%의 연구원이 연구의 미래에 AI가 중요하며, 기술과 AI에 대한 의존도가 더욱 커질 것으로 전망(Elsevier, 2022)
 - 연구원의 대부분은 AI를 연구결과 분석(66%)에 사용하거나, 데이터의 결함이나 문제를 발견하기 위해(49%), 또는 새로운 가설 생성(17%)에 사용
- □ 최근 경제협력개발기구(OECD)는 과학기술 연구 생산성 저하 문제 해결 수단으로서 AI의 역할을 조망한 보고서^{*}를 발표
 - *Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research(OECD, 2023)
 - O 해당 보고서는 총 5개 파트로 구성되어 있으며 여러 분야의 현장 주요 실무자 및 연구자의 견해를 담은 34개의 주제를 엮어 발간
- □ 본 고에서는 AI와 과학 연구의 생산성에 대한 OECD 보고서의 주요 내용을 정리하고 정책적 시사점을 제시

가. Challenges: 과학 연구의 생산성 저하

- □ 기초연구의 중요성에도 불구하고 관련 지식은 부족한 실정이며, 끊임없이 새로운 문제가 등장하는 등 연구 생산성 위기에 직면
 - 기초연구를 기반으로 도출되는 혁신은 상업적 목표를 가진 응용·개발연구에 비해 상대적으로 넓은 범위 및 장기적으로 확산되는 경향이 있어 지속적인 경제성장을 견인
 - 과학의 진보는 이루어지고 있지만, 연구의 생산성 및 효율성 저하 문제는 전 세계적인 현상으로 반도체, 제약바이오, 농업 등 다양한 기술 분야에서 나타남

[과학기술 연구 생산성 관련 사례]

- o (반도체) 집적회로 성능을 2배 증가하기 위해 필요한 연구자 수는 1970년대와 비교해 18배이며, 무어의 법칙*에 이견 존재
 - * 무어(Moore)의 법칙 : 반도체 집적회로의 성능이 1~2년마다 2배로 증가한다는 법칙으로 과학기술 발전 속도의 가속화 현상을 의미
- o (바이오·제약) 2014년 기준, 1970년대에 비해 연구개발 투자는 9배가 증가한 반면, 연구 생산성은 5배, 연간 성장률은 3.5% 감소, 제약 부문의 경우 이름의 법칙** 등장
 - ** 이룸(Eroom)의 법칙 : 무어(Moore)의 영문 철자를 거꾸로 표기한 것으로 제약회사에서 신약 개발에 투자하는 연구비 10억 달러당 미국 식품의약국(FDA)에서 승인하는 신약의 수가 9년마다 반으로 줄어드는 현상을 설명. 이는 과학기술 발전 속도 둔화를 의미

/ ∏	1\	사언	브무병	여구	새사서	여펴규	서자류	민	반감기
\ш	1/	11 H	ᅮᅲᆯ	י זי	3,13	1.12.11	$\sim -$	=:	テリモノー

부문	연평균 성장률	성장률 반감기	분석기간	
전체(미국)	-5.3%	13년	1930년~2015년	
무어의 법칙	-6.8%	10년	1971년~2014년	
반도체 부문	-5.6%	12년	1975년~2011년	
농업(미국)	-3.7%	19년	1970년~2007년	
농업(전세계)	-5.5%	13년	1980년~2010년	
신약	-3.5%	20년	1970년~2015년	

출처: The Wall Street Journal (2018.07.) 및 S&T GPS 124호 재인용

- 생산성 저하는 ①인센티브의 변화. ②기초연구에서의 민간 분야 참여 저하. ③경제적 한계 ④정보의 양적 증가로 인한 새로운 정보 취득의 어려움, ⑤과학 발전과 함께 다양한 분야로의 분화, ⑥한정된 과학 법칙의 수 등 다양한 요인에 기인
- □ AI는 생산성 저하 문제에 대한 해결 수단으로서 과학 연구와 혁신을 가속화하고 다양한 글로벌 난제 (Global Challenges)를 해결하는데 활용될 전망

나. Opportunities: 과학 연구에서 AI의 활용 현황 및 가능성

- 1) 실험실에서 AI와 로봇 시스템의 결합
- □ AI와 로봇 시스템의 결합은 연구실 자동화 수준 향상 및 과학 연구 생산성 제고
 - O AI와 로봇 시스템은 사람에 비해 비교적 저렴하고, 빠르고, 정확하며 오랫동안 일할 수 있어 시간과 비용 측면에서 경제성을 보유
 - -특히, 방대한 양의 정보를 체계적으로 추출 및 수집하여 완벽하게 처리할 수 있으며, 시간 및 비용의 최적화 방식으로 가설 검정 및 연구 설계 가능
 - 비교적 쉽게 스케일업(scale-up)할 수 있고 다양한 위험에 노출될 가능성이 낮은 편
 - 연구실 자동화를 통한 AI와의 협업은 연구 편향성을 해소하거나 탐구하지 못한 영역을 조명하는 등 시너지 효과를 도출
 - 이에, 유전학과 신약 개발 연구에서는 AI를 활용한 다양한 연구 사례 존재

[AI를 활용한 국내 과학기술 연구 사례]

- o 2023년 8월, 포스텍 연구진은 AI를 신약 개발을 위한 임상시험에 도입 및 성공
 - 머신러닝을 이용해 임상시험 전 약물의 성공 가능성과 부작용 예측 성공
 - 이는 약물 승인 여부를 추측하여 시간과 비용 절감 가능성을 시사

2) AI를 통한 지식 생성 및 정보 관리

- □ AI를 활용한 학술 정보 관리는 기존 문헌에 존재했지만 인식하지 못했던 지식 발견 또는 기존 지식 간 관계를 파악하여 새로운 지식 생성 가능
 - 문헌 기반 발견(literature-based discovery)*과 미발견 공공지식(undiscovered public knowledge)**은 연구자에게 새로운 과학적 통찰을 제시
 - * 학술 문헌 내 정보를 통해서 기존에 명시적으로 연결되지 않았던 잠재적 관계를 발견하여 새로운 지식을 밝혀내는 과정, Swanson의 ABC 모델의 경우, A-B의 관계와 B-C의 관계를 통해 A-C의 관계를 추론하는 것을 의미
 - ** 문헌 내에 존재하지만 인지하지 못한 채 존재하는 과학적 발견, 가설 및 주장, 이는 잘 알려지지 않은 학술지에 게재 되었거나 인터넷 색인이 없는 경우일 수 있음. 또는 동일한 문제를 다루지만 서로 쉽게 통합되지 않는 여러 유형의 증거가 여러 연구에 걸쳐 존재하는 경우에 해당(역학 연구와 사례 보고서 등)
 - O AI의 빠른 기술개발로 다음 세대 문헌 기반 발견 시스템은 비자연어 형태의 정보(표, 차트, 그림, 프로그래밍 코드 등)를 활용할 가능성 존재
 - O 데이터 마이닝(data mining)이나 메타분석(meta-analysis)과 비교해 복잡하고 전문화된 문제를 해결한다는 점에서 차별적이며, 생물 정보학이나 생의학 연구에서는 이러한 추론 방식을 새로운 명제나 가설을 생성하는데 사용
 - AI 도입으로 개인 맞춤치료와 예측 반응에 대한 정밀성 향상 및 기존 디지털 데이터와의 결합 기대

[지식 생성 및 정보 관리 활용 사례]

- o 국내 생물정보학 연구진은 2015년 미발견 공공 지식 추론을 통해 췌장암 유전자와 단백질 상호작용 네트워크 및 유발 관계 사슬을 연구한 바 있음
- o 2023년 서울대병원 융합의학과 연구진은 인공지능을 활용한 유전체 서열 및 공간 전사체 데이터 활용에 대해 발표한 바 있음
- 3) Al 기계학습(Machine Learning)을 통한 과학적 주장 검증
- □ 코로나19 팬데믹 중 잘못된 정보 확산 경험 및 기후변화와 같은 민감한 현안 논의 등에 있어 과학적 주장 검증 및 자동화의 시급성 확인
 - O 일부 소셜 네트워크 서비스(SNS)는 인간과 기계학습 모형 모두를 활용해 수동 및 자동화 방식으로 사실 확인 작업 수행
- □ 과학적 주장에 대한 기존 검증방식은 한계가 존재하며, 학습한 정보를 바탕으로 하는 AI 기계학습 활용은 과학적 주장을 검증하는 도구로 활용 가능
 - O 과학적 주장은 전문용어의 빈번한 사용, 해당 분야의 전문지식 보유, 내재된 불확실성이라는 특이성이 존재하여 기존 검증방식은 한계 존재
 - 검증 단계에서 활용할 수 있는 외부 정보의 통합 및 근거 정보가 되는 문서의 범위에 대한 확장 요구
 - 이 과정에서 인간과 AI의 의사결정 조정구조에 대한 검토를 통해 AI 기계학습을 통한 과학적 주장에 대한 검증 가능
- 4) AI와의 협력을 통한 과학에서의 시민 참여 확대
- □ 시민 과학과 AI의 협력은 데이터 수집 및 처리 수준 향상에 도움
 - 시민들이 과학연구에 참여 시 AI와의 협력은 데이터 수집 및 처리의 양·속도를 향상시키고 새로운 방식으로 데이터 수집을 가능하게 만들어 줌
 - -인간과 기계의 상호학습 과정에서 새로운 데이터 출처(data source)를 활용할 수 있으며, 이 과정에서 정보의 질 향상
 - O AI는 복잡한 과학 연구 프로젝트를 시민 다수가 과학에 참여할 수 있는 적절한 수준의 과제로 분리하는 역할을 할 것으로 기대

다. The Future of Research: AI와 과학 연구의 미래

- □ 연구 대규모화와 국제화는 사람과 AI의 협업 중요성을 증대시키고 있으며, 집단지성을 발휘하여 각 능력의 총합보다 더 뛰어난 결과물 제시 및 연구 생산성 제고에 기여
 - (지식 인코딩 및 발견) 언어 모델의 개발은 과학커뮤니케이션 인프라의 발전에 기여해 연구자가 학술문헌을 활용하는데 도움
 - 대규모 언어모델(LLM) 기반 연구 보조 도구는 특정 학습 없이 정보 추출 기능과 예측 (prediction)으로 연구에 기여
 - 'GPT-3' 기반 AI 서비스 'Elicit'은 선행연구 검토단계에서 해당 논문 및 관련 논문에 대한 주요 정보를 요약하고 과학자의 특정 선호를 반영하여 연구 생산성 향상에 도움
 - (지식 연결 및 구조화) 인간-AI 하이브리드(hybrid) 시스템은 관련성 있는 지식을 조직화하고 종합하는데 핵심적 역할 수행
 - 지식 표현(knowledge representation)* 및 인간과 기계의 상호작용은 학술 정보를 지식 그래프(knowledge graph)**로 표현이 가능하도록 함
 - * 기계가 문제 해결에 필요한 지식을 컴퓨터 시스템에서 실행 가능한 언어 형태로 나타내는 것으로, AI가 실질적인 문제를 해결하기 위한 핵심 요소임
 - ** 지식 베이스(knowledge base)에 축적한 다양한 지식을 점(node)과 선(edge)으로 표현한 지식 구조 그래프 모델로 AI 지능을 향상하기 위해 활용하는 대표적 방법
 - 인간-AI 하이브리드는 정확도와 적용 범위 확장으로 지식 종합 인프라 구축에 기여
 - O (감독 및 품질 관리) 인간의 집단지성은 지식 종합 인프라의 지속적 관리와 품질 관리에 도움을 주어 AI의 활용 효과를 증대
- □ 반면, 연구에서의 AI의 활용은 한계점이 존재하며 국가, 기관 측면에서 지원방안 마련 필요
 - (연구 다양성 감소) AI 기반 연구를 둘러싼 학계와 산업계의 긴밀성은 공공연구기관에서 연구 우선순위의 왜곡을 초래해 연구 다양성 정체 및 감소 유발
 - 대기업의 딥러닝 기술은 대학과 공공연구기관의 아이디어에 기반, 대학 및 공공 부문 AI 연구는 민간 기업 소프트웨어를 이용하는 등 연구에 있어서 산학연 협력을 강화
 - 하지만, 민간 기업으로의 박사급 연구자 유출 비율이 상승하며, 대규모 데이터 셋과 인프라를 보유하여 영향력이 높은 민간 부문 연구는 상업적이고 지엽적 성향을 보유할 가능성 존재
 - 연구역량을 보유한 우수한 대학은 민간기업과 협력 대상이 될 가능성이 높아 다양한 연구보다는 편향적이고 지엽적인 성향을 보유할 가능성이 높은 편
 - -이에, 다양한 방식의 공공R&D 지원 강화를 통해 대학의 연구 다양성을 제고하고 의사 결정에 참여하는 정책 입안자들이 전문지식을 확보할 필요

- O (서비스 품질) AI가 보유한 데이터의 정확도, 신뢰성, 데이터 의존성 등 편향된 정보 보유 및 서비스 품질 상이
 - -생성형 AI 등 AI가 보유하고 분석하는 정보의 상당수는 영어권 언어나 서구 중심 정보로 구성되어 있어 정보 편향성이 있으며, 데이터 의존적 성과로 이어져 활용 시 고려 필요
 - Meta사의 'Galactica'나 OpenAI사의 'ChatGPT'와 같은 일부 AI 서비스는 정확성이나 신뢰도 등 품질에 일부 의문이 제기되고 있는 상황으로 중장기적 개선 요구
- O (AI 민주화) 비용과 자원의 문제로 인해 소규모 연구팀은 연구를 유지하는데 현실적 어려움 존재
 - 소규모 연구팀은 AI 모델의 초고성능에 요구되는 대규모 데이터 셋과 컴퓨팅 자원을 갖추는 데 한계 존재
 - AutoML(Automated Machine Learning), 즉 자동화된 기계학습 방식이 해결책으로 제시되고 있으며 OpenML 등 오픈 AI 데이터 플랫폼의 등장은 이를 가속화
 - 최상의 모델 탐색 및 데이터 전처리 방식 개선으로 소규모 연구팀도 연구 효율성을 높일 수 있을 것으로 기대되며, 개방형 플랫폼을 통한 데이터 셋 및 모델 데이터베이스 구축 협력 요구
- O (정보 분산 및 민감성) 기계학습에 활용되는 방대한 정보 파편화 및 연구 분야에 따라 민감 정보에 대한 엄격한 규제 발생 가능성이 높은 편
 - 헬스케어 분이의 경우 병원, 기업 연구실 등 다양한 곳에 정보가 분산되어 있으며, 민감한 개인정보 포함
 - 연합학습(federated learning)*방식이 해결책으로 활용될 수 있으나, 민간 부문에서는 인프라 구축에 한계가 존재하여 공공 분야 지원 요구
 - * 개별 데이터의 물리적 공유 없이 다수의 개별 디바이스를 통해 인공자능 모델을 학습하고(local model) 클리우드 상의 서버로 전송해 통합 및 반복 학습하는(global model) 방식으로, 데이터 프라이버시 항상과 컴퓨팅 자원 분산 처리의 이점을 가짐
- O (해석력) 강력한 기계학습 기술도 해석력(interpretability)의 부족으로 원인과 결과의 연관성을 설명하지 못하는 경우에 블랙박스(black-box) 문제 존재
 - 일부 기계학습 방식은 복잡성과 전문성을 지녀, 일반인의 이해에 장애 요인으로 작용하며 전문가에게만 가치가 있을 가능성 존재
 - -설명을 돕기 위한 이미지 생성 수행 능력 부족으로 인해 상업적 활용 시 한계가 있을 수 있어 지속적인 기술개발 필요

3 정책적 시사점

- □ AI를 활용한 연구생산성 제고를 위한 지속적인 지원·평가체계 구축
 - 컴퓨터 과학자를 포함한 다양한 분야의 과학자와 엔지니어와 협력하여 AI를 활용한 여러 도전과제를 해결하기 위해서는 예산 지원 등 장기적 지원체계를 마련할 필요
 - O AI 연구 및 연구생산성 제고를 위한 AI 적용의 중장기 비전을 수립하고 이를 달성하기 위한 로드맵을 개발하여 연구자들에게 명확한 방향을 제시할 필요

- AI 연구개발 및 활용을 위한 연구자금 증액과 AI 연구센터 및 인프라 구축을 통해 소규모 연구팀도 활용할 수 있는 혁신지원 인프라를 강화
- 연구 데이터의 공유 촉진 및 개인정보 보호에 대한 강화된 정책 개발
- O 연구 관련 블랙박스 처리과정 등에서 발생하는 숨겨진 편향 및 내재된 기술적 위험성을 진단하는 등 AI 연구의 성과를 측정하고 연구생산성 제고와 관련된 적절한 지표 및 평가도구 개발
- □ AI의 실질적인 활용을 위해 Local/Private GPT 및 한국어 기반의 대규모 언어 모델(LLM) 개발 및 보급 촉진
 - O Al 민주화, 정보 보안성 및 민감성 등 Al 활용에서의 한계점에 대응하여 조직 차원의 Local/Private GPT 개발 및 활성화 필요
 - 최근 open AI 확산 등 AI의 빠른 기술개발 및 개방성은 Local/Private GPT 개발 및 적용 가능성을 높여주고 있으며 이를 통해 개인 및 조직 내 민감 정보 유출 가능성 감소
 - -Local GPT 활성화를 위해서는 특화된 학습 데이터 확보 및 조직원들의 적극적 참여 필요
 - O 영어권에 집중되어 있는 생성형 AI 한계 극복을 위해 한국어 기반 대규모 언어 모델 개발을 통한 국내 공공기관 및 민간기업 내 AI의 실질적 활용 가능성 제고
- □ AI를 기반으로 한 국제적 연구 파트너십 강화 및 AI 관련 연구자 교육 실시
 - O AI는 국제적으로 개방형 지식 네트워크 형성을 통해 다수의 과학자가 협력할 수 있는 체계를 구축할 수 있으므로 국경을 넘어서 지식을 조직화하고 종합하는데 수월
 - -이에, 국제적으로 AI 연구와 협력을 강화하고, 다양한 분야의 전문가 및 산업체와의 협력을 촉진하여 연구의 다각화와 혁신을 유도
 - 연구자들이 AI 기술과 도구를 활용하는데 필요한 교육 및 교육 프로그램을 제공함으로써 AI 기술의 활용범위를 확대할 수 있도록 지원
- □ 연구 신뢰도·투명성 제고 및 연구자 윤리와 연계한 AI 윤리 가이드라인 개발·적용
 - O AI를 활용한 연구의 재현 가능성 향상으로 연구의 신뢰성과 생산성을 제고하며 연구기관 및 출판사는 AI를 활용한 연구의 질 향상을 위해 노력할 필요
 - 연구기관 내 품질 보증 과정 마련 및 논문 게재 시 관련 데이터를 제출하고 AI로 검증할 수 있는 시스템 구축 필요
 - O AI 연구개발과정에서 윤리적 문제를 고려하고, AI의 잠재적인 부정적 영향을 방지하기 위한 가이드라인 개발·적용

참고문헌

- 관계부처 합동(2023), 전국민 AI 일상화 실행계획
- 파이낸셜뉴스, 엔비디아, 25~26일 서울대병원과 'HCLS 서밋 코리아 2023' 개최 (2023.08.21. 기사)
- KISTEP(2018), 연구 생산성 감소 원인 분석, 글로벌 과학기술정책정보 서비스(S&T GPS) 124호.
- 삼성 SDS(2023), ChatGPT를 넘어, 생성형 Al(Generative Al)의 미래- 1, 2편, *인사이트 리포트*
- 안혜림, 송민, 허고은(2015), "텍스트마이닝과 주경로 분석을 이용한 미발견 공공 지식 추론 췌장암 유전자-단백질 유발사슬의 경우 -", 한국비블리아학회지 26.1: 217-231.
- 전자신문, "포스텍, 신약개발 임상시험에 AI 기술 적용 성공" (2023.08.02. 기사)
- Elsevier(2022), Research Futures 2.0: A New Look at the Drivers and Scenarios That Will Define the Decade
- The Wall Street Journal(2018), In an Era of Tech Innovation, Whispers of Declining Research Productivity (2018.07.13. 기사)
- OECD(2023), Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research

[KISTEP 브리프 발간 현황]

발간호 (발행일)	제목	저자 및 소속	비고
57 (23.01.06.)	MZ세대를 위한 미래 기술	지수영·안지현 (KISTEP)	미래예측
– (23.01.20.)	KISTEP Think 2023, 10대 과학기술혁신정책 0쩐다	강현규·최대승 (KISTEP)	이슈페이퍼 (제341호)
58 (23.02.02.)	세계경제포럼(WEF) Global Risks 2023 주요내용 및 사사점	김다은·김유신 (KISTEP)	혁신정책
59 (23.02.07.)	미국의「오픈사이언스의 해」 선포와 정책적 시사점	이민정 (KISTEP)	혁신정책
– (23.02.21.)	'데이터 보안' 시대의 10대 미래유망기술	박창현·임현 (KISTEP)	이슈페이퍼 (제342호)
60 (23.03.06.)	연구자산 보호 관련 주요국 정책 동향 및 시사점	유지은·김보경 (KISTEP)	혁신정책
61 (23.03.20.)	美,「과학적 진실성 정책 및 실행을 위한 프레임워크」의 주요 내용 및 시사점	정동덕 (KISTEP)	혁신정책
– (23.03.29.)	우리나라 바이오헬스 산업의 주력산업화를 위한 정부 역할 및 지원방안	홍미영·김주원 안지현·김종란 (KISTEP)	이슈페이퍼 (제343호)
62 (23.03.30.)	2021년 한국의 과학기술논문 발표 및 피인용 현황	한혁 (KISTEP)	통계분석
63 (23.03.30.)	2021년 신약개발 정부 R&D 투자 포트폴리오 분석	강유진·김종란 (KISTEP)	통계분석
– (23.04.03.)	국방연구개발 예산 체계 진단과 제언	임승혁·안광수 (KISTEP)	이슈페이퍼 (제344호)
64 (23.04.06.)	2023년 중국 양화의 주요 내용 및 과학기술외교 시사점	강진원·장지원 (KISTEP)	혁신정책
65 (23.04.10.)	2023 인공자능 반도체	채명식·이호윤 (KISTEP)	기술동향
66 (23.04.13.)	생성형 AI 관련 주요 이슈 및 정책적 시시점	고윤미·심정민 (KISTEP)	혁신정책

발간호 (발행일)	제목	저자 및 소속	비고
–	STI 인텔리전스 기능 강화 방안	변순천 외	이슈페이퍼
(23.04.17.)	-12대 과학기술혁신 정책 이슈를 중심으로-	(KISTEP)	(제345호)
67	「OECD Science, Technology, Innovation Outlook	홍세호·심정민	혁신정책
(23.04.17.)	2023」의 주요 내용 및 시사점	(KISTEP)	
–	임무지형형 시회문제해결 R&D 프로세스 설계 및 제언	박노언·기지훈·김현오	이슈페이퍼
(23.04.19.)		(KISTEP)	(제346호)
68 (23.05.02.)	전/차 배터리 핵심핑물	이승필·여준석·조유진 (KISTEP)	기술동향
–	기업 혁신활동 제고를 위한 R&D 조세 지원 정책 연구	구본진	이슈페이퍼
(23.05.03.)	: 국가전략기술 연구기발 기업을 중심으로	(KISTEP)	(제347호)
69	해위·조작정보 대응을 위한 OECD 원칙 및 과학기술	배용국·정미나	혁신정책
(23.05.04.)	사사점	(KISTEP)	
70 (23.06.08.)	OECD MSTI 2023-March의 주요 결과	정유진 (KISTEP)	통계분석
71 (23.06.09.)	2022년 지역 과학기술학신 역당평가	한혁·안지혜 (KISTEP)	통계분석
72 (23.06.23.)	일본, 『사이언스 맵 2020』의 주요내용 및 정책적 사사점	이미화·심정민 (KISTEP)	혁신정책
–	국가연구가발 성과정보 관리체계 개선 제언	김행미	이슈페이퍼
(23.06.27.)		(KISTEP)	(제348호)
–	신입과학기술인 작무역량에 대한 작장상사-신입간 인식	박수빈	이슈페이퍼
(23.06.28.)	비교 분석	(KISTEP)	(제349호)
73 (23.06.30.)	2021년도 국가연구배사업 내 여성과학기술인력 현황	한혁 (KISTEP)	통계분석
74 (23.07.03.)	2022년 국가 괴학기술학신역량 분석	김선경·한혁 (KISTEP)	통계분석
– (23.07.05.)	기술패건경쟁시대 한국 과학기술외교 대응 방향	강진원·김진하 (KISTEP), 이정태(KIST)	이슈페이퍼 (제350호)
–	학문분이별 기초연구 지원체계에 대한 중장기 정책제언	안지현·윤성용·함선영	이슈페이퍼
(23.07.06.)	(국내외 지원현황의 심층분석을 기반으로)	(KISTEP)	(제351호)
75	美 2023 국방과학기술전략서(NDSTS)의	유나리·최충현·임승혁·	혁신정책
(23.07.14.)	주요 내용 및 시사점	한민규(KISTEP)	

발간호 (발행일)	제목	저자 및 소속	비고
76 (23.07.27.)	2023년 IMD 세계경쟁력 분석	한혁 (KISTEP)	통계분석
77 (23.07.27.)	2021년 미국 박사학위 취득자 현황 분석	한혁 (KISTEP)	통계분석
78 (23.07.26.)	제 5차 과학기술기본계획과 과학기술분야 중장기계획 간 연계현황 및 시사점	홍정석·심정민 (KISTEP)	혁신정책
79 (23.08.01.)	일본 『통합혁신전략 2023』의 주요 내용 및 시사점	양은진·심정민 (KISTEP)	혁신정책
80 (23.08.21.)	일본 『2023 우주기본계획』의 주요 내용 및 시사점	최충현·문태석·이재민· 강현규(KISTEP)	혁신정책
81 (23.08.29.)	미국의 R&D와 혁신 현황	한혁 (KISTEP)	통계분석
82 (23.08.30.)	2023년 유럽혁신자수 분석과 사사점	한웅용 (KISTEP)	통계분석
83 (23.09.01.)	희토류 화수 및 재활용 기술	박정원·문윤실·이현경 (KISTEP)	기술동향
84 (23.09.20.)	화합물 전력반도체	유형정·김기봉 (KISTEP)	기술주권
85 (23.09.21)	『OECD Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research』의 주요 내용 및 시사점	정하선·심정민 (KISTEP)	혁신정책