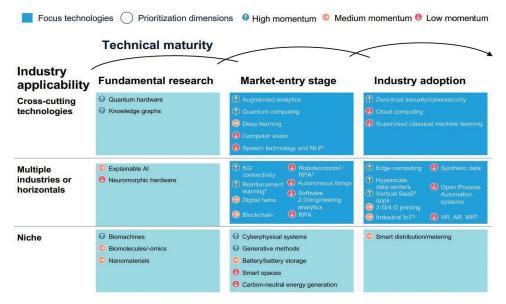
KISTEP 정책 브리프

향후 10년 미래변화를 이끌 혁신기술 동향 분석

본고는 맥킨지&컴퍼니에서 발간한 'The top trends in tech' 보고서를 KISTEP 전문가가 분석 · 정리한 것임


('21.8.23, 혁신전략연구소 손석호 정책위원)

1 작성 배경

- 최근 맥킨지&컴퍼니는 향후 10년 간 미래사회 변화에 큰 영향을 미칠 핵심 기술을 선정하고 발전 동향을 담은 'The top trends in tech' 보고서를 발간('21.6.24)
 - 10대* 분야에 대한 기술동향 및 발전전망, 파급효과 등을 분석하여 제시
 - * ① 차세대 프로세스 자동화 및 가상화, ② 연결의 미래, ③ 분산 인프라, ④ 차세대 컴퓨팅, ⑤ 인공지능의 응용 및 활용, ⑥ 프로그램밍의 미래, ⑦ 트러스트 아키텍처, ⑧ 바이오 혁명, ⑨ 차세대 재료, ⑩ 청정기술의 미래

2 10대 분야 기술동향 및 파급효과 분석

- 미래사회 파급효과가 높은 핵심기술의 선정을 위해 40 여개의 기술을 대상으로 평가를 통해 우선순위를 부여
 - 기술의 성숙도(Technical maturity), 산업적 활용가능성 및 파급효과(Industrial applicability), 기술 발전 가속도 (Momentum) 등의 기준을 활용

[그림] 미래기술 우선순위 평가 결과

- 우선순위 부여 결과를 10대 분야로 정리하고 각 분야에 대해 관련 기반기술, 미래발전 전망, 파급효과 및 예상되는 주요 이슈 등을 제시
 - 10대 분야를 다시 7개의 산업간 연계(Cross-industries) 활용분야, 3개의 고유특성 산업분야(Industry-specific)로 구분

■ 10대 분야 기반기술, 파급효과 및 주요 이슈분석 결과

구분	분야	기반기술	파급효과	예상되는 주요 이슈		
	11 차세대프로세스 자동화및가상화	산업 IoT 로봇/협동로봇/RPA (로보틱 프로세스자동화) 디지털 트윈스 3D/4D 프린팅	• 2025년까지 현재 생산/ 작업 활동의 50%가 자동화되거나 기상현실에서 처리	 스스로 학습하고 활동하는 로봇의 인력대체는 노동력 재구성 및 배치를 기속화할 전망으로 기업은 인력 활용, 정책입안자는 노동 대체 문제에 직면 고급 시뮬레이션과 3D·4D 프린팅은 제품 및 서비스의 수명주기, 개발주기를 단축 시켜 새로운 수익 창출 전략과 기업운영에 영향 		
	2 연결의 미래	•5G •IoT 연결	• 2030년까지 5G를 이용하는 세계 인구가 80%에 도달	• 원거리 및 단거리에 걸쳐 초고속 연결이 가능해져 원격수술, 라이브 VR 등 새로운 서비스 출현이 기속화되어 다양한 온라인 커넥티드 비즈니스 모델을 창출		
산 업 간	3 분산 인프라	• 클라우드 컴퓨팅 • 엣지 컴퓨팅	• 2025년까지 기업생성 데이터의 75%이상을 클라우드 또는 엣지 컴퓨팅으로 처리	• 조직 내 서버, IT 인프라 구축·운용 수요를 클라우드 컴퓨팅으로 대체함으로서 관련 인력을 S/W개발 등 경쟁력 강화를 위해 활용 가능		
연 계 활 용 분	4 차세대 컴퓨팅	•양자컴퓨팅 •뉴로모픽컴퓨팅	• 2035년까지 양자 컴퓨팅 활용 가치가 1조 달러를 넘어설 전망	 분자 수준의 시뮬레이션과 같은 고성능 계산 능력은 재료, 화학 및 의약품 등 산업 전반의 혁신을 견인하고 특히, 개인 맞춤형 제품/서비스 개발을 촉진 반면, 대부분의 암호화 보안 알고리즘 파괴 가능성이 있어 현재의 사이버 보안 접근 방식에 한계가 드러날 가능성 존재 		
0ţ	5 인공지능 응용/ 활용	• 컴퓨터 비전 • 자연어 처리 • 스피치 기술	• 2050년까지 디지털 서비스의 75% 이상이 음성 도우미와 같이 사용자 맞춤형이며 편의성이 항상된 형태로 전환	• 시의 성숙으로 문서 정리, 단순 작성 등 반복 직업과 관련된 노동력은 빠르게 대체되고 원격의료, 고급엔지니어링 등 전문화된 서비스 인력을 지원하는 방향으로 발전		
	6 프로그램밍의 미래	• 소프트웨어 2.0	• 2050년까지 소프트웨어 개발 및 분석에 소요되는 시간이 최대 30배 이상 단축	• 소프트웨어 개발 복잡성을 줄여주어 효율성이 높아지겠지만 이러한 이점을 극대화하기 위한 데이터 관리 및 분석, 관련 인프라의 수요는 더욱 증가		
	7 트러스트 아키텍처	• 제로 트러스트 보안 • 블록체인	• 2027년까지 전세계 GDP의 최대 10%가 블록체인과 연계	• 블록체인 등 기술을 통해 중간자 없이 기업 간, 개인 간 신뢰기반 비즈니스 활동이 확대되고 비용절감도 가능해 지겠지만, 정부에서는 규제와 감독에 대한 다양한시도가 이루어질 가능성		
고 유 특 성 산 업 분 야	8 바이오 혁명	• 생체분자/오믹스/ 바이오시스템 • 바이오머신/ 바이오컴퓨팅/ 오그멘테이션	• 지난 10년 간 인간 게놈 염기서열 분석에 투입한 비용의 45분의 1로 동일한 성과 달성	'omics'는 유전자 물질에 대한 신속한 분석을 기능케하여 빠른 백신 개발, 개인 맞춤형 의약품, 유전자치료 등 분야에 혁신을 가져올 전망 DNA 등 생물학적 재료를 활용한 컴퓨팅 기술은데이터 저장 용량의 확장성을 대폭개선		
	9 차세대 재료	나노소재그래핀 및 2D 소재이황화몰리브덴 나노 입자	2050년까지 2008년에서 2018년까지 등록된 특허 수의 10배가 생산될 전망	• 재료의 혁신은 다양한 제품과 서비스의 경제성에 변화를 가져와 기업의 구조개편을 촉진(예 : 지속 기능한재료, 재생에너지원재료 등)		
	10 청정기술의 미래	• 핵융합 • 스마트분배/측정 • 배터리/배터리 보관 • 탄소중립 에너지	• 2050년에는 75% 이상을 신재생에너지로 생산	 청정기술의 경제성 확보는 기존의 비즈니스 모델에 큰 영향 초래 또한, 탄소배출 관련 대차대조표에 영향을 미치는 기후변화 관련 새로운 법과 규정의 개발 및 적용도 촉진 		

- 미래기술의 발전은 모든 산업의 혁신에 큰 기여를 하겠지만 그 영향력 정도는 매우 다양하게 나타날 것으로 예상
 - 예를 들어 차세대 프로세스 자동화 · 가상화 관련 기술의 발전은 수송 · 물류, 자율주행, 화학, 전기전자, 정보, 통신 등 거의 모든 산업분야에 큰 영향을 미칠 전망
 - 반면, 차세대 재료의 경우 4차 산업혁명 관련 분야 중 첨단산업 및 전기전자분야에 특히 영향력이 클 것으로 예상

	헬스케어 분야		모빌리티 분야		4차 산업혁명 분야			기반 분야	
	제약	헬스	수송·물류	자율주행	첨단산업	화학	전기전자	정보	통신
1 차세대 프로세스 자동화/가상화									
9 차세대 재료									
5 인공지능의 응용/활용									
10 청정기술의 미래									
2 연결의 미래									
8 바이오 혁명									
4 차세대 컴퓨팅									
7 트러스트 아키텍처									
3 분산 인프라									
6 프로그램밍의 미래									
[영향 정도] 높음 중간	낮음								

[그림] 미래기술의 산업별 영향력 평가결과

3 시사점

- 과거의 경험을 통해 알 수 있듯 미래기술의 선점은 혁신을 선도할 수 있는 기회를 제공하고 관련 산업에서 독점적 지위로 성장이 가능
 - ※ (예시) 미국 S&P500 지수에 포함된 총 기업 가치의 25%이상을 2000년 이후 IT기술을 기반으로 혁신에 성공한 기업이 차지 (2000년 당시 10% 이하)
 - 즉, 향후 과학기술혁신정책은 미래기술 선점을 위한 R&D 추진에 초점을 맞추고 혁신적 도전에 따른 고위험을 감당할 수 있는 투자를 확대할 필요
- 10대 분야 기반기술 대부분은 헬스케어, 차세대 모빌리티, 디지털 대전환, 친환경 지속 가능성장과 관련된 것으로 미국, 중국, EU 등 국가 간 패권 경쟁이 이미 치열하게 진행 중
 - ※ (예시) 미 바이든 정부: 2030년 미국 내 신차수요의 50%를 전기차 가 담당하도록 할 계획, 중국: 2021년 전기차는 이미 중국내 신차수요의 13%를 차지(중국승용차협회), EU: 2023년부터 탄소국경세 적용방안 적극 검토 중
 - 기술우위 확보를 위한 R&D경쟁 뿐 아니라 법적, 제도적 장치의 마련, 무역장벽의 적극적 활용을 통한 우월적 지위 선점 등 전방위적 경쟁으로 진입 중
 - 우리도 혁신적 · 도전적 R&D 확대와 함께 관련 산업의 국제질서 형성과정에 글로벌 리더로서의 자리매김을 위한 전략적 접근이 필요
- 코로나 팬데믹이 촉진한 4차 산업혁명의 가속화에 따른 미래의 경제 · 산업 환경 변화를 고려한 과학기술 혁신정책의 전략적 실행 필요
 - 차세대 디지털, 첨단의료 등 혁신기술의 확보 · 활용 능력에 따른 국가, 지역, 세대 간 격차로 발생할 수 있는 다양한 경제 · 사회적 문제를 사전에 파악하고 대비할 수 있는 전략의 마련이 필요
 - ※ 예시) 향후 국가 과학기술 비전 및 목표를 담을 '과학기술 기본계획' 등에 경제·산업·사회 변화에 대한 분석을 강화하고 미래 문제 발굴과 해결책 제시에 초점을 맞춘 전략서로 개발될 필요

KISTEP 정책브리프 발간목록

발간호	제목	저자
2021-01 (통권 제1호)	다보스 2021 의제와 과학기술의 미래	황인영(KISTEP)
2021-02 (통권 제2호)	바이든 대통령의 공급망 점검에 관한 행정명령	도계훈(KISTEP)
2021-03 (통권 제3호)	2021년과 그 이후를 지배할 7대 메가트렌드	손석호, 황인영(KISTEP)
2021-04 (통권 제4호)	일본의 제6기「과학기술·혁신기본계획」 주요 내용과 시사점	도계훈(KISTEP)
2021-05 (통권 제5호)	코로나19 이후 직업의 미래	이정재(KISTEP)
2021-06 (통권 제6호)	코로나19 등 감염병 대응 정부의 R&D 지원 방향	홍미영, 김주원(KISTEP)
2021-07 (통권 제7호)	차량용 반도체 공급부족 이슈와 정부 R&D 지원 방안	채명식, 진영현(KISTEP)
2021-08 (통권 제8호)	COVID-19가 바꿀 과학기술혁신정책의 미래	손석호, 황인영(KISTEP)
2021-09 (통권 제9호)	지표관점에서의 한국 AI 현황 검토와 정책 시사점	김선경, 이윤빈(KISTEP)
2021-10 (통권 제10호)	기술지주회사제도의 주요 이슈와 개선방안	정동덕(KISTEP)