
기술동향

6G 통신 기술

KISTEP 성장동력사업센터 이승필·형준혁

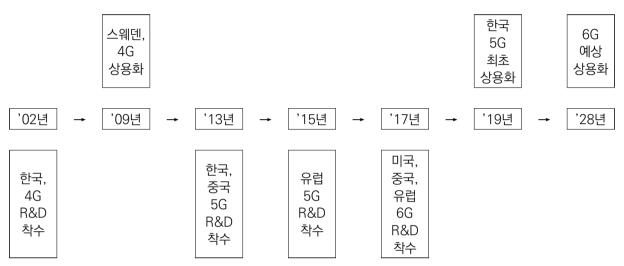
Contents

제1장	개요 1
제2장	기술동향 6
제3장	시장전망 29
제4장	정책동향 33
제5장	R&D 투자동향 ······· 39
제6장	결론 41

제1장 개요

1.1 작성 배경

- ⑤ 통신 인프라는 10년 주기의 세대적 진화를 통해 사회 및 산업 발전의 필수 인프라가 되었으며, '19년 이후 5G 통신 시대가 본격 진행 중에 있음¹)
 - 2세대('90~'00)는 1세대의 아날로그 기술을 디지털 기술로 전환하고 무선 음성용량을 확대 하여 글로벌 음성서비스 산업의 인프라를 제공
 - 3세대('00~'10)는 기존 유선 인터넷 서비스를 단말에서 제공하는 모바일 데이터 서비스 산업 인프라를 제공하였고, 4세대('10~현재)에서 OFDM* 기술 채택을 통해 데이터서비스 용량을 극대화
 - * 직교주파수분할(OFDM): Orthogonal Frequency Division Multiplexing
 - 5세대('19~)는 통신기술을 타 산업으로 확산한 융합서비스를 발전시키기 위해 "초고속", "초저지연", "초연결"을 핵심 목표로 정의하여 관련 기술개발 및 인프라 구축 진행 중



[그림 1] 국내 이동통신 세대별 주요 기술 변화

* 출처 : 메리츠증권, "5G 산업 심층분석", 2018

¹⁾ KISTEP(2020), 「6G 핵심기술개발사업 예비타당성조사보고서」

- 글로벌 선진 국가/기업들은 5G 인프라 구축과 병행하여 미래 6G 통신 산업 선점을 위해 관련 연구개발을 착수하였으며, 최근 주요 비전을 제시
 - 5G R&D의 경우 상용화 7년 전인 '13년경 착수되었으며, 6G의 경우 '28년 상용화를 대비하여 글로벌 각국에서 '18년경부터 R&D를 착수

[그림 2] 주요국 통신 인프라 R&D 및 상용화 흐름

- 글로벌 기업들은 6G 무선통신정상회의에서 6G에 대한 비전을 제시하고, 도전과제를 제시하는 등 활발한 논의를 진행('19)2)
 - (화웨이) "2020년대 연결된 사물 → 2030년대 연결된 지능" 비전 제시
 - (에릭슨) "Internet of Thought, New computing paradigms" 비전 제시
 - (노키아) "Hyper specification·capable·sensing"비전 제시
 - (삼성전자) "Internet of Skill, Super eMBB·mMTC·URLLC 비전 제시
 - (도코모) "Extreme High data rate·coverage·latency·low energy" 비전 제시
- ※ 본 고에서는 미래 6G 통신 산업 주도를 위한 관련 연구개발이 시작되는 시점에서 각국의 기술/정책 동향 및 정부 R&D 투자동향을 조사하고 시사점을 도출하고자 함

²⁾ IEEE(2019), 「6G Wireless Summit」

1.2 기술의 정의 및 범위

1.2.1 6G 미래상

- - (5G 성능 고도화) 자율주행, 오감 홀로그램 통신, 원격 수술 등 5G 서비스의 본격 확산에 따른 초고속, 초저지연, 초연결의 고도화
 - (네트워크 완전 지능화) 지능형 유무선 통신 인프라 기반의 인공지능 에이전트간 대규모 협업을 통한 다양한 융합 서비스가 일상에 보편화 될 전망
 - (통신 커버리지 초월) 기존 육상 중심의 통신 서비스에서 해상, 공중, 우주 등 보편적 무선 통신 서비스 제공이 가능한 인프라 가시화 예상

〈표 1〉6G 미래 서비스 예시

^{*} 출처: "6G 시대를 선도하기 위한 미래 이동통신 R&D 추진전략", 관계부처 합동, 2019, 재구성

1.2.2 기술 정의 및 분류

◎ 6G 미래상을 구현하기 위해서는 5G의 요구사항인 초고속, 초저지연, 초연결의 확장과 함께 초공간, 초지능, 초신뢰를 더한 6가지 기술 특성으로 구성

[그림 3] 6G 통신 주요 기술 지표

- * 출처: 6G 시대를 선도하기위한 미래이동통신 R&D 추진전략, 과기정통부, 2020
- ◎ 본 고에서는 6개 주요지표에 요구되는 핵심 성능 지표(KPI) 달성과 연관되는
 기술분야에 대한 기술/시장 동향을 조사하고자 함

〈표 2〉 6G 주요 지표별 기술분야 및 세부 분류

※ 보안의 경우 본 고에서 다루고자 하는 인프라적 통신산업의 범주를 벗어나는 주제이므로 제외함, * 출처: "6G 핵심기술개발사업"예비타당성조사보고서, 2020.06 재구성

〈표 3〉6G 기술분류별 정의 및 주요핵심기술

	세부 분류	정의				
	①Tbps 무선통신	미래 신서비스 실현을 위해 Thz 초광대역 신호 대역폭을 사용하여 최대 전송속도 1Tbps, 사용자 체감전송속도 1Gbps를 제공하는 무선통신 핵심기술				
1. 이동통신	②3차원 공간 이동통신	에어택시, 스마트항공, 드론 등 향후 10년 이내에 본격적으로 대두될 무인비행체 서비스 실현을 위한 3차원 공간 이동통신 기술				
	③지능형무선액세스	단위 면적당 대규모대용량 트래픽 수용과 복합 상황 처리를 위한 고복잡성 무선 액세스의 지능화 및 최적화 기술				
	④Thz RF부품	114GHz~1THz에서 동작하고 30GHz까지의 대역폭을 지원하는 Thz 6G 기지국/단말기용 RF/안테나 부품 개발, 전치연구현에 적용할 GaN 반도체 공정, 광기반 부품 기술 등				
2. RF	⑤Thz 주파수	통신용으로 사용되지 않던 100G 이상의 주파수와 최대 40GHz의 대역폭이 필요함에 따라 무선전송시스템 설계에 필요한 전파 채널 모델 및 기지국/단말기의 전자파 안전성 평가 기술				
3. 광통신	⑥Tbps 광통신	6G 서비스의 대규모 데이터 트래픽으로 인해 발생하는 속도 /용량, 에너지, 상면적, 지연, 경제성 등의 문제를 해결하기 위한 광통신 원천기술				
4. 위성통신	⑦3차원 공간 위성통신	저궤도, 정지궤도 위성을 이용하여 커버리지가 전 지구적으로 확대됨에 따라 필요한 3차원 공간 위성통신 기술				
E 141E017	⑧종단간 초정밀 네트워크	3D 홀로그램, 원격제어/의료 등 실시간 초실감 서비스의 품질 보장을 위해 필요한 종단간 초저지연, 고정밀 네트워크 기술				
5. 네트워크	⑨지능형 모바일 코어 네트워크	미래의 초분산화되고 복잡해지는 네트워크 및 서비스 환경에 대응할 수 있는 지능형 모바일 코어 네트워크 기술				

* 출처 : "6G 핵심기술개발사업"예비타당성조사보고서, 2020.06 재구성

제2장 기술동향

2.1 글로벌 기술동향

2.1.1 Tbps 무선통신

- 데이터 빅뱅으로 불리는 6G 트래픽 처리를 위해, 테라헤르츠 대역의 기초적인 무선통신기술 개발이 진행
 - (유럽) Horizon 2020프로젝트를 중심으로 모뎀, 프로토콜 등 무선통신 핵심 원천기술 개발 추진
 - TERRANOVA 프로젝트를 통해 MMIC RF Front-End와 RoF(Radio over Fiber) IQ 전송 기반 275GHz 이상 대역에서 1Tbps 통신링크 연구 추진('17.7~)3)
 - TERAPOD 프로젝트를 통해 300GHz 대역 기반 데이터센터용 통신링크 PoC(Proof Of Concept) 연구 추진('17.9~)4)
 - ULTRAWAVE 프로젝트를 통해 100Gbps 전송속도로 140~148.5GHz에서 P2MP, 275~300GHz에서 P2P 기술 개발('17.9~)5)
 - ※ P2MP: Point to Multi Point / P2P: Point to Point
 - (미국) 대학을 중심으로 원천기술 연구와 민간주도 연합체(넥스트 G 얼라이언스)를 구성하여 연구개발 진행
 - ComCenTer*에서 미래의 모바일 환경 구축을 위해 개인당 1~100 Gbps 제공, 100~1000 개의 빔을 동시 제어 등이 가능한 테라헤르츠 통신 및 센싱 기술 연구 추진
 - * ComSenTer(Center for Converged TeraHertz Communications and Sensing): 반도체 관련 기업 및 대학 연구소 등의 범세계적 협회인 SRC(Semiconductor Research Corp.) 산하의 대학 중심 연구 프로그램

³⁾ https://ict-terranova.eu/wp-content/uploads/2020/06/D2.3-1.pdf

⁴⁾ https://terapod-project.eu/

⁵⁾ http://ultrawave2020.eu/wp-content/uploads/2018/12/D2-1-ULTRAWAVE-System-specification-Public.pdf

- (일본) 6G 주도권 확보를 위해 민간 연구회 발족 등 연구 개발 진행
 - NTT는 300에 대역에서 100Gbps(실내 10m) 무선전송 시연 발표('18)
- (중국) 공업정보화부는 IMT-2020(5G) 추진단을 기반으로 중국 정보통신원(CAICT) 산하에 IMT-2030을 설립 하여 '30년 상용화를 목표로 연구 진행
 - 난징 하이테크 연구소는 국가 연구지원에 의해 360~430GHz 테라헤르츠 대역 무선전송 실험 시스템을 구축하고, 포토닉 테라헤르츠 기술을 이용, 단일 파장시 103Gbps, 이중 파장시 206Gbps 달성을 발표('22.1)⁶⁾
 - 상하이 교통대학과 차이나유니콤은 밀리미터파 테라급 전송기술 개발 진행('22.2)7)
- (사우디아라비아, KAUT) LIS(Large Intelligent Surfaces)를 이용하여 NLOS 환경의 사용자들에게 다중 사용자 MIMO 환경에서의 수신 SNR을 비교함('19)

2.1.2 3차원 공간 이동통신

- - (미국) AT&T, 페이스북 등 미국 주요 선진 기업들은 공간 이동체를 활용한 무선통신기술 연구개발을 활발하게 진행 중
 - 페이스북은 고고도 공역에서 장기 체공이 가능한 Solar-power 무인비행체 및 공간 이동 체용 초고속 무선전송 기술을 개발하여 이를 이용한 인터넷망 보급 프로젝트 추진 중
 - AT&T는 LTE 소형 기지국을 탑재한 저고도 무인비행체를 통해 LTE 데이터 전송에 성공 ('17)
 - (유럽) 플라잉셀(F-Cell), Eurecom Perfume 등 다양한 프로젝트를 통해 무인비행체 이동 통신 기술 개발 중
 - 노키아는 Massive MIMO 기반 무선 백홀을 통해 지상망과 통신하는 플라잉셀(F-Cell) 프로젝트를 진행
 - 유럽연구위원회에서는 기계학습 기반으로 최적의 위치를 갱신할 수 있는 UAV(Unmanned Aerial Vehicle) 릴레이 기지국을 개발하는 Eurecom Perfume 프로젝트 진행('15~'20)

⁶⁾ https://www.globaltimes.cn/page/202201/1245197.shtml

⁷⁾ https://www.scmp.com/news/china/science/article/3166372/race-6g-chinese-researchers-declare-data-streaming-record

- (일본) 소프트뱅크는 벌룬 형태가 아닌 선글라이더 형태의 고도 20km, 셀반경 100km, 지연 0.3msec의 HAPS를 제시하고 이며, 이는 태양 전지 패널에 의해 6개월간 비행하며, 총 40 여대로 일본 전역을 커버할 것을 발표⁸⁾
- (중국) 산업정보기술부(MIIT)에서는 2019년부터 정부부처 그룹과 대학, 연구소, 기업으로 구성한 그룹 등 2개 연구그룹을 구성하여 6G 개발을 시작⁹⁾
 - ZTE에서는 3차원 연결성, 테라헤르츠 통신, 지능형 MIMO 등이 6G 네트워크의 주요 기술임을 발표('20)
 - 화웨이는 '디지털 스카이 이니셔티브'를 통해 300m까지의 저공역 네트워크를 지원하는 드론 기반 이동통신 기술을 개발 중이며, 다양한 네트워크 간 및 네트워크를 통해 연결된 다자간 간에 신뢰성을 제공하기 위해서 블록체인 기반 RAN(B-RAN)을 제시
- (터키) 최대 통신사인 투르크셀(TurkCell)에서는 MWC 2019에서 드론셀을 전시
 - 재난·재해 등으로 인한 통신망 두절 상황에서 긴급 이동통신 서비스 제공이 목적이며 3G 및 4G 소형기지국을 탑재하여 200m 상공에서 30분간 비행 가능
 - 투르크셀에서 IEEE 5G Summit에서 소개한 Flying Base Station은 UMTS* & LTE 기지국을 무인 항공기에 탑재하여 고도 120m에서 2~5km 통신 커버리지를 제공('19)
 - * UMTS(Universal Mobile Telecommunications System) : 유럽의 3세대 이동통신 IMT-2000 명칭

2.1.3 지능형 무선액세스

- 지능형 무선 액세스 기술 분야의 국제표준은 3GPP, O-RAN 등에서 RAN 지능화, 기계학습 기반 무선전송 등에 대한 연구가 진행 중
 - 3GPP Rel-17 TR 37.817은 RAN3 WG를 중심으로 기계학습 기술을 적용한 RAN 지능화기능 구조와 대표 use case에 대한 표준 규격 이슈 연구¹⁰⁾ 및 Rel-18 AI/ML for NG-RAN work item에서 표준 규격 개발¹¹⁾

⁸⁾ https://news.yahoo.co.jp/articles/e6c4dd41fb1317b433c7ab4d9f94bdf89a8c74f0

⁹⁾ https://www.globaltimes.cn/content/1190058.shtml

^{10) 3}GPP (2020), TR 37.817, Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; 「Study on enhancement for Data Collection for NR and EN-DC」 (Release 17)

^{11) 3}GPP (2021), RP-213602, 「New WI: Artificial Intelligence (AI)/Machine Learning (ML) for NG-RAN」, CMCC, 3GPP TSG RAN Meeting #94e.

- 3GPP의 이동통신 기술 표준화와 관련하여 채널 상태 정보 전달, 빔 관리 및 측위 기술에 대해 인공지능 적용에 따른 이점분석 및 고려사항이 도출될 계획^{12)('22)}
- O-RAN은 개방형 5G 기지국 구조에 AI/ML을 적용한 지능화된 RAN 제어 기능을 제공하기 위해 RAN Intelligent Controller(RIC)를 정의하였고, ML을 적용하여 RAN 기능 요소에 대한 실시간 제어 및 최적화 연구 수행¹³⁾
- ☞ 무선 액세스 네트워크 분야에서 기계학습 기반의 채널추정, 자원할당, 빔포밍등의 연구가 미국. 유럽. 중국을 중심으로 활발히 진행 중
 - (미국, 애리조나대) 각 기지국 별 최적의 하향링크 빔포밍 벡터를 인공지능에 기반하여 탐색하는 기술을 제안하였으며 이를 통하여 기존 협력전송 기술에서의 상향링크 빔 훈련 구간을 감소시킬 수 있음을 발표¹⁴⁾('18)
 - (덴마크) 딥러닝에 기반하여 OFDM 네트워크에서의 파일럿 신호 기반 채널추정 연구가수행되었고, 초해상도 및 잡음 제거 기능을 수행하는 네트워크 제안15)('19)
 - (스웨덴, 에릭슨) 강화학습을 통해 최적빔을 선택하여 핸드오버를 수행하는 알고리즘을 제안¹⁶⁾ ('20)
 - (독일) 단말 위치 정보를 기반으로 LSTM(Long-Short Term Memory)모델을 통해 현재 이후의 단말 위치를 예측하여 후보셀을 결정하는 알고리즘을 제안함¹⁷⁾('21)
 - (중국) 고속 이동 환경에서 더 좋은 주변셀을 찾기 위한 추가적인 측정 과정과 핸드오버 성공률 간의 trade-off 문제를 인공지능을 적용하여 해결¹⁸⁾.

^{12) 3}GPP (2021), RP-213599, New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, 3GPP TSG RAN Meeting #94e.

¹³⁾ O-RAN Alliance, O-RAN.WG1 O-RAN Architecture Description

¹⁴⁾ A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu and D. Tujkovic, (2018), Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems, in IEEE Access, vol. 6, pp. 37328–37348.

¹⁵⁾ Soltani, Mehran, et al. (2019), 「Deep learning-based channel estimation.」 IEEE Communications Letters 23.4: pp. 652-655.

¹⁶⁾ Vijaya Yajnanarayana et al. (2020), 「5G Handover using Reinforcement Learning.」 IEEE 3rd 5G World Forum (5GWF).

¹⁷⁾ A. Prado et al., (2021), 「ECHO: Enhanced Conditional Handover boosted by Trajectory Prediction.」 IEEE GLOBECOM 2021.

¹⁸⁾ Yuanjie Li et al., (2021), 「Can Online Learning Increase the Reliability of Extreme Mobility Management?」, IEEE/ACM 29th International Symposium on Quality of Service (IWQOS).

• (이스라엘) 지도학습에 기반하여 MIMO 신호 검출기를 설계한 연구가 수행되었으며, 기존의 근사 최적 알고리즘인 SDR(Semidefinite relaxation) 기법과 유사한 검출 성능을 가지며, 해당 기법의 단점인 높은 복잡도를 해결할 수 있음을 제시¹⁹⁾('17)

2.1.4 Thz RF 부품

- 고정 무선통신용으로 광소자 기반 단일채널 송수신 RF 부품이 독일 및 일본 중심으로 연구시제품 수준으로 개발되었고, 최근 능동전자주사식 배열 구조 다채널 위상배열 칩이 미국 대학을 중심으로 개발 중20)
 - (독일/Wuppertal대) SiGe 소자를 이용하여 1m 거리에서 100Gbps급 전송성능을 갖는
 230GHz 대역 단일채널 RF 송수신기 칩 개발('19)²¹⁾
 - (독일/슈투트가르트대) 300GHz 대역 단일채널 송수신기 MMIC를 InGaAs HEMT 공정으로 개발하고 10m 거리에서 16QAM 변조방식으로 56Gbps 전송 성능 시연('20)²²⁾
 - (독일/IHP) 220~250GHz대역 4채널 위상변위기로 구성된 빔형성 RF 송신 칩('13)과 저잡음 증폭기 및 하향변환 믹서를 포함한 단일채널 수신회로 등을 SiGe BiCMOS 공정으로 개발 ('18)
 - 후속 연구로 450GHz에서 0.5dBm과 540GHz에서 -4.5dBm 출력의 송신기 칩 발표('21)²³⁾
 - (일본/NTT) 300GHz 중심 주파수와 25GHz 대역 신호로 16QAM 변조에 의해 2.2m 거리에서 100Gbps 전송 성능을 시연하고 이에 필요한 80nm InP 송수신기 칩 개발('18)²⁴⁾
 - (일본/동경대) 70~105GHz 대역에서 모든 송수신기 회로 요소를 단일칩으로 집적한 120Gbps급 성능의 CMOS 트랜시버 칩 발표('18)²⁵⁾

¹⁹⁾ N. Samuel, T. Diskin, and A. Wiesel. (2017), Deep MIMO detection, in Proc. IEEE 18th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Sapporo, Japan, Jul. 2017, pp. 1–5.

²⁰⁾ 대한전자공학회지(2020), 「6G 통신에 대비한 RF 기술동향」.

²¹⁾ Rodríguez-Vázquez, Pedro (2019), 「A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology」, IEEE Microwave and Wireless Components Letters 29(4), pp. 297-299.

²²⁾ I. Dan, I. Kallfass (2020), ^rA Terahertz Wireless Communication Link Using a Superheterodyne Approach_J, IEEE Trans. Terahertz Sci. Tech., 10(1), pp. 32-43.

²³⁾ A. Guner (2021), 「A 440-540-GHz Transmitter in 130-nm SiGe BiCMOS」, IEEE Microwave and Wireless Components Letters, 31(6), pp. 779-782.

²⁴⁾ H. Hamada et al. (2018), 「300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer」, IEEE Int. Microwave Symp, pp. 1480-1483.

²⁵⁾ K. Tokgoz (2018), ^rActive and Passive Device Characterizations on CMOS for Ultra-High Data-Rate Millimeter-Wave and Sub-Terahertz Wireless Transceivers_, ISSCC, pp. 168-169.

- (일본/NICT) 히로시마대학과 공동으로 300GHz 대역에서 80Gbps급 전송 성능을 지원하는 40nm CMOS 공정기반 단일 칩 트랜시버 개발('19)²⁶⁾
- (중국/칭화대) 94GHz 대역에서 출력전력 11dBm과 잡음지수 10.5dB 성능을 갖는 2x2 위상배열 송수신기를 65nm CMOS 공정으로 개발('19)²⁷⁾
- (미국/MIT) 240GHz 대역에서 32개의 온칩 배열 안테나로 구성된 수신기 칩을 65nm CMOS 공정으로 개발('19)²⁸⁾
- (미국/California대) DARPA 지원으로 UC Santa Barbara에서는 270GHz 대역에서 16.8dBm 포화출력을 갖는 고출력 전력증폭기를 250nm InP HBT 공정으로 개발 ('21)²⁹⁾
 - 유사한 기술을 131GHz 대역에 적용하여 우수한 성능의 전력증폭기 칩 발표('21)30)
- (미국/UC Santa Barbara) 140GHz 대역에서 위상변위기와 증폭기, 상향/하향변환 믹서 등으로 구성된 4채널 트랜시버 칩을 45nm SOI(Silicon On Insulator) CMOS 공정으로 개발('20)³¹⁾
- (미국/UC San Diego) 139~155GHz 대역에서 동작하는 8채널 수신기 칩을 SOI CMOS 공정으로 개발했으며, 잡음지수 7.5dB 이하, 빔 조향 범위 75도 수준으로 비교적 우수('21)³²⁾

2.1.5 THz 주파수

²⁶⁾ Lee, Sangyeop (2019), 「An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver」, IEEE Journal of Solid-State Circuits, 54.12, pp. 3577-3588.

²⁷⁾ D. Huang (2019), 「A 94GHz 2×2 Phased-Array FMCW Imaging Radar Transceiver with 11dBm Output Power and 10.5dB NF in 65nm CMOS」, IEEE RFIC Symposium, pp. 47-50.

²⁸⁾ Z Hu,(2019), 「A 32-Unit 240-GHz Heterodyne Receiver Array in 65-nm CMOS With Array-Wide Phase Locking」, IEEE J. Solid-State Cir., 54(5), pp. 1216-1227.

²⁹⁾ A. Ahmed (2021), 「A compact H-band Power Amplifier with High Output Power」IEEE RFIC Synp. pp.123-126.

³⁰⁾ A. Ahmed (2021). 「A 200mW D-band Power Amplifier with 17.8% PAE in 250-nm InP HBT Technology」, EuMIC Conference.

³¹⁾ A. Simsek (2020), 「A 140GHz Two-Channel CMOS Transmitter Using Low-Cost Packaging Technologies」, IEEE Wireless Communications and Networking Conference.

³²⁾ S. Li and G. Rebeiz (2021), 「An Eight-Element 140 GHz Wafer-Scale Phased-Array Transmitter with 32 dBm Peak EIRP and > 16 Gbps 16QAM and 64QAM Operation」, IEEE IMS Workshop WSB-6.

- (미국/NYU 대학) 28배와 140배 주파수 대역의 채널사운더 장비를 이용하여 실내 및 실외 전파환경에서의 경로손실 특성 등 측정 결과를 발표('21)33)34)
- (미국/USC 대학) Vector Network Analyzer 장비를 이용, 실내 가시거리 최대 5.5m까지 140~220에 대역의 경로손실 측정결과를 발표('20)³⁵⁾
- (유럽/ETSI) 130~174.8에 대역을 점대점 무선링크에 활용하는 채널할당 보고서를 발간 ('18)³⁶⁾
- (독일/TU-Braunschweig 대학) 상용 UWB 센서 기반의 300에 채널사운더를 이용, 데이터 센터 등 실내 근거리 환경의 전파특성 측정결과를 발표('19)37)
- (핀란드/Aalto 대학) 140에 주파수 대역을 쇼핑몰, 공항 등 실내 근거리 백홀 어플리케이션 적용을 고려, 경로손실, 지연 및 각확산 특성 측정결과를 발표('21)38)
- (중국/북경우전대) 220~330에 주파수 대역의 6G 무선통신 활용을 고려, 초단거리 경로 손실 특성 측정결과를 발표('21)³⁹⁾
- THz 주파수 대역 전자파에 대한 인체영향은 일부 대학에서 연구가 진행 중이며, 최근 40GHz 이하 전자파에 대한 EMC 기준 표준 제정 중
 - (이스라엘/히브루 대학) 땀샘이 포함된 피부조직의 유전율 모델을 개발, 해당 모델을 사용하여 Sub-THz 대역의 전자파가 인체에 흡수되는 비율을 분석한 연구결과를 제시('17)40)
 - (러시아/모스크바 대학, 이스라엘/히브루 대학) 사람의 손바닥에 대해 400GHz Sub-THz 대역에서 반사계수를 측정하고 피부조직을 모델링한 연구결과를 발표('19, '21)41)42)

³³⁾ Y. Xing, T. S. Rappaport, and A. Ghosh (2021), 「Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment」, IEEE Commun. Lett.

³⁴⁾ Y. Xing and T. S. Rappaport (2021), 「Millimeter wave and terahertz urban microcell propagation measurements and models, EEE Commun. Lett.

³⁵⁾ Naveed A. Abbasi, et. al. (2020), 「Channel Measurements and Path loss Modeling for Indoor THz Communication」, EuCAP.

³⁶⁾ https://docdb.cept.org/document/6034

³⁷⁾ J. M. Eckhardt, T. Doeker, S. Rey, and T. Kurner (2019), 「Measurements in a real data center at 300 GHz and recent results」, EuCAP.

³⁸⁾ S. L. H. Nguyen, K. Haneda, J. Jarvelainen, A. Karttunen, and J. Putkonen (2021), 「Large-scale parameters of spatio-temporal short-range indoor backhaul channels at 140 GHz」, IEEE VTC Spring.

³⁹⁾ Tang, Pan, et al. (2021), 「Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications」, China Communications, 18(5), pp. 19–32.

⁴⁰⁾ N. Betzalel, et al. (2017), The modeling of the absorbance of Sub-THz radiation by human skin, IEEE Trans. on Terahertz Science and Technology, 7(5), pp. 521-528.

- (중국/홍콩대학교) 피부에 가하는 압력과 수분 함유율의 시간에 따른 변화가 Sub-THz 대역 피부조직의 전기적 특성변화에 미치는 영향을 분석하고 발표('18)43)44)
- (IEC, ITU-T) 불요전자파에 의한 전자기기의 오작동을 막기 위해 사용되는 전자파 방해 기준에 대해 6~40 GHz 주파수 대역에서 적용되는 방해기준 표준 제정 중('22)45)

2.1.6 Tbps 광통신

- ◎ (테라급 광액세스 기술) 6G 대용량 데이터 전송을 위한 무선 프론트홀/백홀 관련 광액세스 구조 및 전송 연구·개발 진행 중
 - (가상·개방형 구조) 6G를 위한 광액세스 인터페이스가 기능 분리, 개방형 구조 및 가상화로 진화함에 이를 지원하는 연구 및 개발 진행
 - (미국/Cisco) ORAN 규격 및 전송 용량 900Gbps 수준을 지원하는 프론트홀 게이트웨이 장비(제품명: NCS540) 출시 및 데모('21.7.)⁴⁶⁾
 - (미국/Ciena) ORAN/eCPRI 지원 및 전송 용량 800Gbps 지원하는 5G용 xHaul 게이트 웨이 등 ORAN 솔루션 발표('20.2)⁴⁷⁾
 - (유럽) 유럽 주요 통신사(도이치텔레콤/오렌지/텔레포니카/보다폰)간 ORAN 기술 채택을 위한 MoU 체결 및 협력 발표('21.1.)48)
 - (직접수신 기술 고도화) 폭증하는 모바일 데이터 수용을 위해 기존 직접수신기술 기반으로 파장당 50Gbps 또는 100Gbps 광전송 기술 개발 진행
 - (미국/Nokia) 영국 보다폰과 공동으로 25Gbps급 광부품 및 DSP 기술 활용한 단일 파장 100Gbps PON 기술 시연('21.2)⁴⁹⁾

⁴¹⁾ A. Kochnev, et al. (2019), 「Electromagnetic Reflectance Measurements of Human Palms in Sub-THz Frequency Band」, IRMMW-THz conference.

⁴²⁾ K. A. Baksheeva, et al. (2021), The Sub-THz Emission of the Human Body Under Physiological Stress, IEEE Trans. on Terahertz Science and Technology, 11(4), pp. 381-388

⁴³⁾ J. Wang, et al. (2018), 「THz in vivo measurements: the effects of pressure on skin reflectivity」, Biomedical Optics Express, 9(12), pp. 6467-6476.

⁴⁴⁾ Q. Sun, et al. (2018), In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy, Journal of Biophotonics.

⁴⁵⁾ 한국정보통신기술협회(2021), 「ICT Standard Weekly 제 1067호」.

⁴⁶⁾ Cisco Blogs, https://blogs.cisco.com/sp/cisco-strengthens-o-ran-market-position-with-open-fronthaul-gateway-public-demo

⁴⁷⁾ Joe Marsella, 「Ciena Open RAN Solutions」 발표 자료

⁴⁸⁾ orange news, Major European Opeators Commit to Open RAN Deployments

- (미국/Marvell) 5G ORAN/vRAN 지원을 위한 단일 파장, 50Gbps 전송이 가능한 PAM4 DSP 칩 및 드라이버 등 일괄적 지원 가능한 PAM4 DSP 칩셋 출시('21.12)⁵⁰⁾
- (중국/화웨이) 점대점 광 액세스용으로 PAM4 방식으로 50Gbps 기술을 연구 개발하고 디지털 신호처리 기술이 적용된 50Gbps NRZ 광액세스 기술 연구
- (코히어런트 기술) 데이터 속도의 증가에 따른 기존 직접수신 방식의 광액세스망 적용 한계를 극복하기 위한 코히어런트 전송 기술 저가·경량형 코히어런트 기술 개발 중
 - (미국/Marvell) 코히어런트 기술이 적용된 400ZR* 규격이 적용된 400Gbps 단일 DSP 칩, QSFP-DD DCO** 광트랜시버를 업계 최초로 개발('19.12.)⁵¹⁾
 - * 400ZR: Optical Interconnect Forum(OIF)에서 제정한 코히어런트 400Gbps, 120km 전송 규격
 - ** QSFP-DD: 400Gbbps까지 지원하는 광트랜시버 외형 규격 / DCO: DSP칩과 광송수신기를 집적화하 모듈
 - (핀란드/Nokia) 400Gbps 코히어런트 DSP 칩(제품명: Super Coherent, 7nm 공정) 개발('20) 및 400ZR 용 QSFP-DD 광트랜시버 개발 중
 - (일본/미쯔비시) 복잡도가 낮은 등화기 및 캐리어 위상 복구 기능을 적용하여 파장당 100Gbps 코히어런트 WDM-PON 시스템 시연('18)52)
 - (중국/화웨이) 비용효율적, 저 복잡도 단거리용 코히어런트 기술을 적용하여 400Gbps, 16-QAM 신호를 2km 전송한 발표('21)
- ◎ (테라급 인도어망 기술) 인도어 환경에서 6G 대용량 데이터 수용 및 광통신 기반 커버리지 확장을 위한 인도어 DAS 및 무선 광통신 연구·개발 진행 중
 - (디지털 DAS/DIS* 기술) 인도어 또는 빌딩 환경에서 무선 신호를 사용자에게 전달하기 위한 커버리지 확장 기술 연구개발 중
 - (미국/코닝) 28GHz 와 39GHz 대역 5G 인도어 스몰셀 솔루션을 개발('20.12)하여, Verizon과 함께 미국 ㈜WeWork 사에 10Gbps급 인도어 솔루션 제공('21.8)⁵³⁾
 - (중국/콤바) ORAN 기능 분리 7-2 기반의 10Gbps 와 25Gbps 광인터페이스 지원하는 인도어용 RU(Radio Unit) 개발 및 MWC2021 시연('21.06)⁵⁴⁾

⁴⁹⁾ Broadband world news, https://www.broadbandworldnews.com/document.asp?doc_id=767081

⁵⁰⁾ Lightwave, https://www.lightwaveonline.com/optical-tech/electronics/article/14222151/marvell-atlasone-50g-pam4-dsp-chipset-targets-5g-ran-requirements

⁵¹⁾ Lightwave, https://www.lightwaveonline.com

⁵²⁾ Keisuke Mastuda (2018), ^ΓHardware-efficient Adaptive Equalization and Carrier Phase Recovery for 100-Gb/s/λ -Based Coherent WDM-PON systems_J, JLT, 36(8), pp. 1492-1497.

⁵³⁾ https://inbuildingtech.com/5g/corning-launches-new-solution-for-indoor-5g-coverage

- * DAS(Distributed Antenna System), DIS(Digital Indoor System)
- (아날로그 DAS 기술) 모바일 신호를 디지털로 변환하지 않고 중간 주파수 기반의 아날로그 파형으로 전송가능한 6G 인도어망을 위한 차세대 무선접속 광전송 기술 개발 중
 - (독일/노키아-벨랩) KK* 수신 기법을 적용하여 1.53 Tbps (CPRI 등가 데이터율)를 단일 파장(C-band)으로 전송 ('18)
 - * KK(Kramer-Kronig) 수신기법: 진폭 정보를 통해 위상 정보를 획득하기 위한 조건을 이용하여 수 신하는 방법
 - (일본/NICT) 기존 인도어망 멀티모드 파이버를 이용한 차세대 인도어 무선 접속 광전송 기술 제시 ('21)
- (무선 광통신 기술) 영국 캠브리지/리즈/에딘버러/바쓰 대학 등과 공동으로 6G 인도어망통신을 위한 Tbps급 무선 광통신 기술 개발 과제 진행 ('21)55)

2.1.7 3차원 공간 위성통신

- 위성통신산업 성장환경 조성에 따라 글로벌 기업은 막대한 자본을 바탕으로 우주 인터넷 경쟁이 활발히 진행 중⁵⑥
 - (미국/SpaceX) 스페이스X. 위성인터넷 '스타링크' 베타테스트 속도 공개⁵⁷⁾('20.8)
 - 다운로드 35~60Mbps 응답속도 31~94ms, 화상통화 등 기본적인 온라인 서비스 가능
 - 미 육군은 3년간 군사 목적의 스타링크 통신 시험 계약('20.5.)
 - (영국/Oneweb) 소프트 뱅크, 퀄컴, 휴즈가 공동투자 후 '20년 3월 파산하였으나, 영국 정부(5억불)와 인도 Bharti Global(5억불)이 공동 인수('20.7.)
 - Bharti Global은 세계 3대 이동통신 사업자인 Bharti Airtel 계열사로 남아시아 및 사하라 이남 아프리카 지역에 통신 서비스를 제공할 목적
 - 영국 정부는 Galileo 항법 위성 대체용으로 Oneweb 저궤도 위성 활용 목적으로 투자

⁵⁴⁾ comba, 「Open RAN Solution: Remote Radio Unit Open Radio Gateway」, comba product brochure

⁵⁵⁾ Jaafar (2021), ¹The Optical spectrum and Tb/s wireless systems in the 6G Era_J, Workshop on Radio Access Network Techniques for 6G.

⁵⁶⁾ 관계부처 합동(2021), 「초소형위성 및 6G 위성통신기술 개발방안」.

⁵⁷⁾ https://arstechnica.com/information-technology/2020/08/spacex-starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low-as-31ms/

- (캐나다/Telesat Lightspeed) 세계 4위 GEO 위성사업자로 '22년 저궤도 위성 기반 통신 서비스 개시를 목표로 사업 추진 중
 - 고도 약 1,000km에 298개의 위성 네트워크를 구성하여 15Tbps의 전송용량을 갖는 서비스 추진 중
 - 저궤도 위성통신용 지상장비 경제성 확보를 위해 제조사 간의 경쟁방식으로 단말 개발 추진 중('20)
 - 전송방식은 DVB-S2X Annex E Format 5(DL)와 DVB-RCS2(UL) 적용 예정
- (미국/Amazon) SpaceX의 Starlink 사업을 추진한 라지브 바디얄 전 SpaceX 부사장을 영입하여 Kuiper 프로젝트 추진
 - '29년까지 총 3,236개의 저궤도 위성을 발사하여 글로벌 위성통신 서비스 추진 중
 - Amazon은 Kuiper 프로젝트에 \$10억불 투자('20.07)

〈표 4〉 저궤도 위성망 구축 대표기업 및 프로젝트58)

사업자		SpaceX	Telesat	Amazon	OneWeb	
프로젝트명		Starlink	Telesat LEO	Kuiper	OneWeb	
목표	위성수	12,000	298	3,236	47,844	
사업칙	업추진방식 인터넷 서비스 제공				지상 통신사와 제휴	
	위성수	1,584	78	1,618	74	
서비스 개시	시기	2020	2022	2026	2021	
71171	지역	미국, 캐나다 일부	캐나다	_	미국 일부	
평균속도		5.36Gbps	22.74Gbps	_	2.17Gbps	
주파수		사용자: Ku / GW: Ka	사용자: Ka / GW: Ka	사용자: Ka / GW: Ka	사용자: Ku / GW: Ka	

[※] 페이스북(Athena), 레오샛, 구글(Loon), 케플러커뮤니케이션스, 애플 등도 프로젝트 추진 중

- ◎ (단말 안테나) 위성 통신용 단말 안테나는 전자적 빔조향 및 편파 제어가 가능한 Ku대역의 위상배열안테나 개발이 추진 중
 - (이스라엘/SatixFy) Oneweb의 저궤도 위성통신 네트워크를 통한 항공기 기내 인터넷용 (IFC: In-Flight Communication) 단말 개발 계약 체결⁵⁹⁾('21.03)

⁵⁸⁾ 관계부처합동(2021), 「6G 시대를 준비하는 위성통신기술 발전전략」

⁵⁹⁾ https://www.satixfy.com/news/oneweb-and-satixfy-sign-agreement-for-in-flight-connectivity-ifc-compact-terminal/

- (미국/Kymeta) 메타물질 기반으로 전자적으로 스캔되는 평면 배열안테나를 Ku 대역 위성 통신 용도로 개발⁶⁰⁾
- (미국/ThinKom) 안테나 시스템의 전체 높이가 11cm인 Ku 대역 이동 탑재형 안테나 (ThinSat 300)를 개발해 글로벌 위성 서비스 회사인 COMSAT 사와 시험 테스트를 성공적으로 검증⁶¹⁾
- (미국/Ball) 평면 위상 배열 성능을 갖는 항공용 안테나(AIRLINK Ku-100) 개발⁶²⁾

2.1.8 종단간 초정밀 네트워크

- - * TSN(Time-Sensitive Networking): 이더넷 기반으로 소규모 근거리망에서 네트워크 종단간 정보를 손실없이 정해진 시간 내에 빠르게 전달하는 네트워킹 기술
 - ** MTN(Metro Transport Network): 플렉서블 이더넷 기반으로 메트로망에서 5G 무선 액세스 트래픽을 초저지연으로 전송하기 위한 회선 전달망 기술
 - *** DetNet(Deterministic Networking): IP, MPLS 등 L3 기반으로 단일사업자 관리망에서 정보를 손실없이 정해진 시간 내에 빠르게 전달하는 네트워킹 기술
 - (미국, Broadcom) 1G/10G/25G급 이더넷 포트 상에서 TSN 기능을 제공하는 320G급 L2/L3 스위치 칩(BCM53570) 출시('17)⁶³⁾
 - (미국, Infinera) 5G X-haul용 TSN 지원 패킷 광 스위치(EMXP-XH800) 출시('19)⁶⁴⁾
 - (미국, Ciena) MTN 지원 라우터(5164 Series)와 이스라엘 ECI Telecom에서 MTN 지원 전달망 솔루션(Neptune 1800 Series) 발표('20)65)66)

⁶⁰⁾ https://www.newswire.co.kr/newsRead.php?no=927604

⁶¹⁾ https://www.thinkom.com/thinsat-300-coast-to-coast-otm-demo/

⁶²⁾ http://www.satnews.com/story.php?number=1158942036

⁶³⁾ Broadcom, https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm53570

⁶⁴⁾ Infinera, https://www.infinera.com/press-release/infinera-announces-availability-of-new-hardened-tsn-solution-for-5g-and-fiber-deep-applications/

⁶⁵⁾ Ciena, https://www.ciena.com/insights/articles/5g-will-require-a-new-way-to-deliver-ip-connectivity.html

⁶⁶⁾ ECI Telecom, https://ribboncommunications.com/company/media-center/press-releases/eci-now-part-ribbon-demonstrates-5g-capabilities-multi-vendor-interoperability-tests

- (중국, Huawei) 중국 제5차 미래 네트워크 개발 컨퍼런스 조직위 2021년판 백서에서 시간 확정형 IP 기술을 중국 국가 연구개발망(CENI)에 적용한 실증 사례 발표('21)⁶⁷⁾
- (중국/ZTE) PT/EXPO China 2021에서 China Mobile, NR Electric과 공동으로 스마트 그리드를 위한 종단간 TSN 기반 종단간 확정 지연 보장 5G 솔루션 발표('21)⁶⁸⁾
- (중국/China Mobile) ZTE, Huawei 등 중국 산업체와 Broadcom 등 칩 벤더 공동으로
 5G URLLC 서비스를 위해 플렉서블 이더넷(FlexE*) 기술을 기반으로 5G X-haul에서
 HW 슬라이싱을 제공하는 MTN 기술에 대해 국제표준화 추진 제안('19)⁶⁹⁾
 - * FlexE(Flex Ethernet): OIF에서 국제표준화 완료된 기술로서, 본딩(bonding), 서브레이팅 (sub-rating), 채널화 등을 통해 이더넷 물리계층 속도와 무관한 이더넷 MAC 속도를 지원할 수 있는 이더넷 링크 기술
- (중국/China Mobile, Huawei) 단일사업자 관리망에 국한된 DetNet 기술의 광역화를 목적으로 서로 다른 요구사항의 응용 서비스들을 광역망 상에서 지원하기 위한 기술 및 운영 요구사항을 IETF DetNet 워킹그룹에 제안('21)⁷⁰⁾
- (일본/Fujitsu) 한국 HFR과의 파트너쉽으로 5G X-haul용 TSN 지원 솔루션(Smart Xhaul Transport) 발표('19)⁷¹⁾
- (일본/Hitachi) 스웨덴 Ericsson과의 파트너쉽으로 TSN 기반 5G 산업용 IoT 솔루션 시험망 적용 및 시험 발표('20)⁷²⁾
- (핀란드/Nokia) 5G 클라우드 RAN용 TSN 지원 패킷 광 스위치(1830-TPS) 출시('19)⁷³⁾
- (스웨덴/Ericsson) 5G 시민감 통신 서비스를 TSN 기반에서 DetNet IP 기반 단일사업자 관리망으로 확장하기 위한 국제표준화 추진 제안('21)

⁶⁷⁾ Huawei, https://www-file.huawei.com/-/media/corporate/pdf/news/future-network-whitepaper.pdf?la=zh

⁶⁸⁾ ZTE, https://www.zte.com.cn/global/about/news/20210929e1.html

⁶⁹⁾ ITU-T SG15, https://www.itu.int/md/T17-SG15-C-1489/en

⁷⁰⁾ IETF, https://datatracker.ietf.org/doc/draft-liu-detnet-large-scale-requirements/00/

⁷¹⁾ Fujitsu, https://www.fujitsu.com/us/about/resources/news/press-releases/2019/fnc-20190204.html

⁷²⁾ Hitachi, https://www.hitachi.us/press/hitachi-begins-testing-of-5G-powered-industrial-iot-solutions

⁷³⁾ Nokia, https://www.nokia.com/about-us/news/releases/2019/10/22/nokia-nokia-launches-new-packet-optical-switches-for-5g-cloud-ran/

2.1.9 지능형 모바일 코어 네트워크

- ◎ 모바일 코어 네트워크 기능의 분산화, 소프트웨어화, AI 내재화 등 모바일 코어의 진화를 위한 다양한 요소 기술에 대한 기초 연구 진행 중
 - (미국, 5G Americas) "Mobile Communications beyond 2020 The Evolution of 5G Towards the NextG"라는 백서를 통해서 모바일 코어의 진화 방향 논의('20.12)⁷⁴⁾
 - 2020년 이후 통신의 변화에 대한 전망과 홀로그래픽 통신을 비롯하여 제조, 교통 의료 버티컬 산업 등의 사용 사례와 함께 AI/ML과 같은 실현 기술을 제시
 - (독일, 프라운호퍼) 6G SENTINEL과제를 통해 자율 구성, 동적 분산 멀티 코어 네트워크 및 소프트웨어 기반 코어 네트워크 연구 진행 중('21.1)⁷⁵⁾
 - (유럽, Hexa-X) 대규모 민간 중심의 프로젝트인 Hexa-X를 출범하여 6G 비전 및 사용 사례를 발굴하였으며, 6G 구조 및 실현 기술 도출 진행 중('21.1)⁷⁶⁾
 - (유럽, Nokia) 다양한 규모와 유형의 서브 네트워크(sub-networks) 지원, 초특화 슬라이싱 (hyper-specialized slicing), 무선액세스-코어 융합(RAN-Core Convergence) 등을 중심으로 한 6G 네트워크 구조에 대한 개념 제시('20.3)⁷⁷⁾
 - (중국, CAICT) "6G Vision and Candidate Technologies"라는 백서를 통해, AI 내재화, 네트워크와 컴퓨팅의 융합^{*} 등 모바일 네트워크 구조 연구 진행 중('21.6)⁷⁸⁾
 - * 네트워크-컴퓨팅 융합은 단말, 에지, 클라우드 등에 산재된 컴퓨팅 자원에 대한 인지와 이를 기반으로 한 네트워크의 협력 제어를 통한 동적 컴퓨팅 서비스 제공을 의미
 - (중국, China Mobile) 실시간 상황 인지 및 AI 기반 추론을 통한 "인지 서비스"라는 개념을 제시하고 이를 기반으로 하는 6G 모바일 코어 구조 방향 연구('21.3)⁷⁹⁾
 - (중국, 화웨이) 연결 지능, 디지털 트윈, 블록체인 등을 고려한 모바일 코어 네트워크 구조 연구 제시('21.6)⁸⁰⁾

^{74) 5}G Americas(2020), Mobile Communications Beyond 2020 - The Evolution of 5G Towards Next G₁.

⁷⁵⁾ https://www.iis.fraunhofer.de/en/ff/kom/mobile-kom/6g-sentinel.html

⁷⁶⁾ https://hexa-x.eu/

⁷⁷⁾ H. Viswanathan and P. E. Mogensen, (2020), Communications in the 6G Era, IEEE Access, vol. 8, pp. 57063-57074,

⁷⁸⁾ CAICT(2021), 「Whitepaper on 6G Vision and Candidate Technologies」.

⁷⁹⁾ Yuanzhe Li, et. al. (2021), 「Cognitive Service Architecture for 6G Core Network」, IEEE Transactions on Industrial Informatics, 17(10), pp. 7193-7203.

• (일본, NTT 도코모) 다양성 확대, 단말 개수의 증가, 일반 사용자 이외에 산업 도메인으로의 영역 확장, 신뢰성의 중요성 등을 고려한 네트워크 구조에 대한 연구 진행 중('21.2)81)

2.2 국내 기술동향

2.2.1 Tbps 무선통신

- ⑥ 6G 트래픽 처리를 위해 새로운 주파수 대역인 THz 대역을 이용한 Tbps급 무선통신 기술 연구가 국내 기업과 정부 주관으로 진행
 - (삼성전자) ICC 2021 테라헤르츠 통신 워크숍에서 삼성전자와 UCSB 연구진은 140GHz를 활용해 15m 떨어진 거리에서 6.3 Gbps의 데이터 전송 속도 시연('21)82)
 - (LG전자) 독일 프라운호퍼 연구소와 협업을 통해 155~175GHz 대역 15dBm 출력 전력 증폭기를 개발하였고, 100m거리에서 통신 성공 발표('21.8)
 - (LG유플러스) 노키아와 함께 6G RIS*관련 기술협력을 맺고 이동통신 현장과 실험실에서 RIS 실증 추진('22)83)
 - * RIS(Reconfigureble Intelligent Surface) : 재구성가능한 지능형 평면 기술로 투과 및 반사를 제어하여 음영지역에 대한 커버리지를 개선할 수 있는 6G 핵심기술
 - (ETRI) 초고주파(200Ghz 대역) 기반 무선 백홀 기술을 개발 중에 있으며, 최근 이통 3사 및 중소기업과의 컨소시엄을 통해 Tbps급 초고속 무선 통신 기술 연구 추진
 - 도로환경에서 대용량 트래픽을 제공하는 초고주파(200GHz 대역) 기반 무선백홀 핵심원 천기술 연구('18~)
 - 다파장 광원을 이용한 포토닉스 기반 THz 신호 생성, 부고주파 믹서를 이용한 THz 신호 복원기술 연구('19~)
 - ETRI 주관으로 삼성전자, 이동통신3사와 중소기업 컨소시엄으로 테라헤르츠 대역을 이용하여 최대 전송속도 1Tbps, 체감전송속도 1Gbps 목표로 연구개발 시작('21~)

⁸⁰⁾ X. An, et. al, (2021), ⁶G Network Architecture Vision_J, 2021 EuCNC/6G Summit, pp. 592-597.

⁸¹⁾ NTT Docomo(2022), White Paper 5G Evolution and 6G (Version 4.0).

⁸²⁾ S. Abu-Surra et al (2021), 「End-to-end 140 GHz Wireless Link Demonstration with Fully-Digital Beamformed System」, 2021 IEEE ICC Workshops, pp. 1-6.

⁸³⁾ https://www.etnews.com/20220309000078

2.2.2 3차원 공간 이동통신

- ☞ 국내 이동통신 사업자, 학계 등에서는 다양한 이동체 기지국 기술 및 UAV/UAM 관련 기술 개발 진행 중
 - (KT) 재난 상황에서 접근 위험지역이나 고립 지역의 통신 서비스 제공을 위해 Public Safety-LTE를 기반으로 '드론 LTE'를 개발 및 시연('15)
 - (KT) 헬륨 가스 무인비행선, 지상 차량, 드론, 로봇으로 구성된 재난안전 통신 분야에 특화된 스카이십 플랫폼을 공개
 - 스카이십 플랫폼은 스카이십, 스카이십 C3 스테이션(Skyship Command, Control& Communication Station)을 중심으로 세부 임부 수행용 스카이십 드론, 로봇으로 구성됨
 - (LGU+) 2014년 LTE 기반 영상/비행 데이터 송수신 모듈을 탑재한 소형 드론을 시연, 2017년 물품배송 시연, 2018년 시설점검 시연, 2019년 경찰서 드론 순찰대 시연
 - (LGU+) 경기도 시흥 배곧신도시에서 인공지능(AI) 음성인식과 실시간 고화질(HD) 영상 전송 기술을 탑재한 5세대(5G) 이동통신 기반 'U+스마트드론'을 공개 시연('19)
 - (한국항공우주연구원) 지형정보, 기상정보, 감시정보, 성능정보 등 제공을 위한 통신, UAM 운용 및 운항안전 정보제공을 위한 통신, 탑승객 인포테인먼트 통신 등에 대한 개념 연구 수행('20)

2.2.3 지능형 무선액세스

- ◎ 기존 5G 통신에서는 AI를 매우 제한적으로 사용하고 있으나, 6G에서는 개발 초기 단계부터 인공지능 적용을 고려
 - (삼성전자) 기지국 자원을 효과적으로 제어하는 기지국 지능형 컨트롤러(RAN Intelligent Controller, RIC)를 활용하여 일본 이동통신업체 KDDI와 5G 네트워크 슬라이싱(Network Slicing) 기술 검증에 성공⁸⁴⁾('20)
 - (SK텔레콤) 네트워크 운영시스템 TANGO는 네트워크 빅데이터 및 AI 기술을 적용하여 네트워크 품질 최적화, 네트워크 상태 분석 및 고객 체감 품질 관리의 자동화에 활용85)('17)

⁸⁴⁾ https://biz.chosun.com/site/data/html_dir/2020/09/23/2020092300969.html

⁸⁵⁾ https://www.netmanias.com/ko/post/operator_news/12852

- (KT) 공장에 5G 네트워크 기반으로 설치된 카메라들을 통해 이미지를 수집하고 인공지능을 활용해 데이터를 분석해 불량검사, 제품식별, 치수측정 등 검사작업을 효과적으로 수행할 수 있는 'KT 5G 스마트팩토리 비전'서비스를 출시⁸⁶⁾('20)
- (LGU+) 5G 고객들이 사용하는 5G 서비스 품질 빅데이터를 AI가 분석하고, 이를 바탕으로 기지국 안테나의 방향과 각도를 자동으로 조절하는 '5G AI+'시스템을 가동⁸⁷⁾('20)
- (경상대) CNN 기반으로 주파수 효율과 에너지 효율을 최대화하기 위한 전송 전력 제어 방안을 제시하였고, 기존 방식 대비 적은 계산량으로 사용자의 전송 전력을 결정⁸⁸⁾('18)
- (울산대) 전이학습 기반 네트워크 토폴로지 최적화 알고리즘과 강화학습 기반 이동성 최적화 알고리즘을 결합한 핸드오버 알고리즘으로 사용자 만족도 대폭 향상⁸⁹⁾('21)
- (연세대) 단말 측정 정보를 기반으로 지도 학습을 통해 후보셀을 매우 정확하게 예상하는 결과를 제시⁹⁰⁾('20)

2.2.4 Thz RF 부품

- 광소자 및 전자소자 기반의 테라헤르츠 신호발생기/검출기 등 단위부품은 개발되었으나, 양산용 실리콘 반도체 공정기반의 고집적 다채널 빔포밍 칩은 개발초기 단계
 - (ETRI) 광소자 기반으로 근거리 무선통신용 신호생성기 등을 개발하고('19)⁹¹⁾, 40nm bulk CMOS 공정 기반 120GHz 대역 전력증폭기와 체배기, 240GHz 대역 증폭기 등을 집적한 220~260GHz 대역 신호발생기 개발('20)
 - 테라헤르츠 대역에서 이득 52dBi, 직경 18cm 수준의 소형 고이득 안테나를 개발하고 이를 이용하여 100m 이상 거리에서 무선 데이터 전송 가능한 차량 탑재형 250GHz 대역 송수신 모듈 개발('20)92)93)

⁸⁶⁾ https://biz.chosun.com/site/data/html_dir/2020/06/02/2020060201022.html

⁸⁷⁾ https://www.donga.com/news/Economy/article/all/20200823/102611662/1

⁸⁸⁾ W. Lee, M. Kim, and D. H. Cho, (2018), Deep power control: Transmit power control scheme based on convolutional neural network, IEEE Commun. Lett., 22(6), pp. 1276-1279.

⁸⁹⁾ M. Nguyen et al. (2021), 「Machine Learning—Based Mobility Robustness Optimization Under Dynamic Cellular Networks」, IEEE Access, 9, pp. 77830-77844.

⁹⁰⁾ C. Lee et al. (2020), 「Prediction-based Conditional Handover for 5G mmWave Networks A Deep Learning Approach」, IEEE Vehicular Technology Magazine, 15(1), pp. 54-62.

⁹¹⁾ 김현수 외 (2019), 「포토닉스 기반 테라헤르츠 무선통신 기술 동향」, 전자통신동향분석, 34(3), pp.75-85.

⁹²⁾ J.N. Lee (2020), [High-gain sub-terahertz lens horn antenna with a metal guide], Electronics Letters, 56(14), pp.689-691.

- (삼성전자) 140GHz 대역에서 16채널 RF 송수신 모듈 개발하고 이를 이용하여 세계 최초로 서브-테라헤르츠 대역에서 디지털 방식의 적응형 빔포밍 기술 개발('21)⁹⁴⁾
 - California대에서 개발된 4채널 CMOS 트랜시버 칩을 이용하여 15m 거리에서 6Gbps 무선 전송 시연
- (LG전자) 독일 HHI와 공동으로 155~175GHz 대역에서 100m 거리의 무선전송 가능한 15dBm급 전력증폭기 칩 개발('21)
- (충북대) 65nm CMOS 기반 251GHz 및 2차 고조파에 의한 432GHz 대역 발진기 개발 ('20)⁹⁵⁾

2.2.5 THz 주파수

- - (ETRI) 밀리미터파(28~82础) 채널사운더 자체 개발, 국내 전파환경 실측 기반의 국제표준 채널모델 개발 연구를 수행('13~'20)하였으며, 다양한 실내/외 통신환경에서 100GHz 이상 대역의 전파전달특성 측정기술과 채널모델링 연구 수행 중('21)
 - (국립전파연구원) 밀리미터파 전파자원의 기반조성사업을 통해 275~450GHz 대역의 전파 모델 개발을 위한 실내환경 단거리 경로손실 측정결과를 ITU-R에 기고('16)⁹⁶⁾
 - (포항공대) KIOSK 등 단거리 무선통신 활용을 고려하여 220~340에 대역에서 VNA 장비를 이용하여 가시거리 조건(최대 2m)의 경로손실 측정결과를 발표('20)⁹⁷⁾
- ⑤ 5G 상용화 후 전자파 인체영향과 EMC 측정 및 대책기술 관련 연구는 밀리미터파 대역으로 그 범위가 확장되고 있으나 THz 대역은 관련 연구가 필요

⁹³⁾ 테라헤르츠 기술 워크숍 (2021), 「Sub-THz RF systems for Mobile Backhaul Links」,

⁹⁴⁾ S. Abu-Surray(2021), IEEE International Conference on Communications Workshop 2021.

⁹⁵⁾ T. Nguyen and J. Hong (2020), ^rA High Fundamental Frequency Sub-THz CMOS Oscillator With a Capacitive Load Reduction Circuit_J, IEEE Trans. Microw. Theory Tech., 68(7), pp. 2655-2667

⁹⁶⁾ 과학기술정보통신부(2020), 「과기정통부, 5세대(5G) 이동통신과 테라헤르츠에 적용될 전파모델을 국제표준으로 추진」.

⁹⁷⁾ Ho-Jin Song (2020), 「LOS Channel Response Measurement at 300 GHz for Short-Range Wireless Communication」. IEEE WCNC Workshop.

- (ETRI) 5G 서비스에서 사용하는 3.5, 28GHz 대역에서 전자파 인체영향에 대한 연구를 수행 중이며 연구결과를 바탕으로 해당 전자파가 인체에 미치는 영향 평가 측정방법 마련 중 ('21)98)99)
- (국립전파연구원) 밀리미터파 포함 5G 서비스 전자파에 대한 정부의 전자파 인체 안전성 기준을 마련하고 있으며 IEC 및 ITU에서의 안전성 기준 국제표준화에 대응중('19)100)
- (삼성전자/LG전자) 3.5 GHz 대역 및 28 GHz 대역의 이동통신 단말기를 개발하고 해당 기기의 전자파 적합성을 평가하는 기술에 대한 연구 수행중('18~)101)

2.2.6 Tbps 광통신

- ◎ (테라급 광액세스 기술) 국내 산학연에서도 가상·개방형구조 대응, 대용량·경제적 광전송기술 연구에 주력
 - (가상·개방형 구조) 출연연에서는 개방형 구조 지원을 위한 유무선 융합형 광액세스망 연구 진행 중이며 산업체에서는 5G ORAN 수용을 위한 광전송 장비 개발 진행
 - (ETRI) ORAN 프론트홀 구조에서 저지연 전송을 위한 TDM-PON 기술 연구('21)102)
 - (에치에프알) ORAN 지원 RU 장비 개발 및 미국 디시 네트워크의 장비 공급으로 ORAN 시장 진출('21.1)¹⁰³⁾
- (직접수신기술 고도화) 모바일 데이터 수용을 위한 광인터페이스 기반 프론트홀기술 연구 및 개발 진행 중
 - (ETRI) 5G+ 모바일 프론트홀 광링크 적용을 위한 파장 당 50 Gbps 전송기술 및 시스템 개발 진행('20~)¹⁰⁴⁾

⁹⁸⁾ S. B. Jung (2021), 「A study on the necessity to define of measurement interval for installation compliance of 5G base station」, URSI GASS.

⁹⁹⁾ 권덕수 (2021) 「근역장 전력밀도 측정을 위한 프로브 설계」, 한국전자파학회 하계학술대회.

¹⁰⁰⁾ https://www.rra.go.kr/emf2/wrongfact/trenddata/index_view.do?searchCon=title&searchTxt=#

¹⁰¹⁾ Who & How: Making 5G NR Standards, https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/who-and-how_making-5g-nr-standards.pdf

¹⁰²⁾ HS. Chung et al. (2021), 「Lessons Learn from A Tactile Internet Testbed: An Access Network Perspective」, OFC 2021.

¹⁰³⁾ THEELEC, http://www.thelec.kr/news/articleView.html?idxno=10119

¹⁰⁴⁾ KAIST Photonics Systems Research Lab, "http://psrl.kaist.ac.kr/psrl_research.html"

- (KAIST) 경제적 광액세스 구현을 위한 직접 변조 레이저 이용 100Gbps 급 신호 전송 가능한 광송수신 원천 기술 개발 진행(~'21)¹⁰⁵⁾
- (에치에프알) 모바일 프론트홀 광인터페이스 지원을 위한 25Gbps 자동 튜너블(Self-tunable) DWDM 광트랜시버 개발('21)¹⁰⁶⁾
- (코히어런트 기술) 대학 및 연구기관에서 코히어런트 광전송 연구가 이루어지고 있으며 산업계에서는 코히어런트 광트랜시버 개발 초기 단계 수준
 - (ETRI) 단일 파장당 100Gbps급 코히어런트 기술 연구 진행 중('21~)107)
 - (연세대) 광가입자망을 위한 100Gbps급 코히어런트 물리계층 연구 수행('19)108)
 - (오이솔루션) 단일 파장당 100Gbps급 코히어런트 광트랜시버 개발 진행 중('21~)

鰤 (테라급 인도어망 기술) 인도어-DAS 기술 및 무선광통신 기술 개발 추진

- (디지털 DAS 기술) 거리제약, 신호 손실 최소화를 위한 디지털 DAS 기술 개발 진행중
 - (쏠리드) ORAN 인터페이스 지원 인빌딩용 DAS 기술 솔루션(Surf Platform:제품명) 개발 및 25 Gbps급 광모듈 개발('19)109)
 - (ETRI) 파장 당 100Gbps, 직접 수신 기반 광송수신 기술 연구 진행 중('21~)
 - (KAIST) 멀티레벨 디지털 신호처리 기술 개발 진행 중('21~)
- (아날로그 DAS 기술) 전송용량 증대 대응을 위한 아날로그-DAS 기술 연구개발 진행 중
 - (한국전자통신연구원) ㈜KT, ㈜에프알텍과 함께 평창올림픽 mmWave 대역 (28GHz), 다중 IFoF 기반 실내 광중계기 기술 개발('20)110)
 - (에프알텍) 5G 인도어용 아날로그 DAS 장비 개발 및 버라이즌사에 장비 공급('21.4)¹¹¹⁾
- (무선 광통신 기술) 자유공간 광전송 기반 무선 광통신 연구가 대학 중심으로 진행
 - (KAIST) 장거리/대용량 전송이 가능한 무선 광통신 기술 연구 진행(~'22)¹¹²⁾

¹⁰⁵⁾ KAIST Photonics Systems Research Lab, "http://psrl.kaist.ac.kr/psrl_research.html"

¹⁰⁶⁾ HFR, https://hfrnet.com/front/post/post/110

¹⁰⁷⁾ IITP(2022), 「6G 광통신 인프라 핵심기술 전망과 동향」.

¹⁰⁸⁾ 연세대학교(2019), 「차세대 코히어런트 광 가입자망 물리계층 연구 보고서」.

¹⁰⁹⁾ SOLiD, https://solid.com/us/solid-reveals-surf-platform-for-o-ran-compliant-ran-solutions/

¹¹⁰⁾ DATANET, https://www.datanet.co.kr/news/articleView.html?idxno=153916

¹¹¹⁾ 전자신문, https://m.etnews.com/20210408000235

¹¹²⁾ KAIST Photonics Systems Research Lab, http://psrl.kaist.ac.kr/psrl_research.html

- (연세대) 다중 환경의 B5G 이동통신 네트워크를 지원하는 100Gbps, 20km 전송 가능한 자유공간 광전송 기술 연구('21~)¹¹³⁾

2.2.7 3차원 공간 위성통신

- ◎ (통신탑재체) 통신 탑재체가 위성 궤도 내에서 운용하고 있는 중에도 빔의 형상 및 방향을 바꿀 수 있는 안테나 개발 관련 핵심기술 국내 보유
 - (ETRI) Ka 대역 수신용 위상배열 급전 안테나, MMIC 기반 빔 형성 회로 개발 완료('18) 하였으며, Q/V 대역 통신 탑재체 핵심부품에 대한 연구 진행 예정('22~)
- ◎ (통신) 정부출연 연구기관을 중심으로 DVB 규격 기반 위성통신 기술을 확보하였고, 3GPP 표준 기반 전송기술 관련 연구를 진행 중
 - (ETRI) DVB 기반 2세대 VSAT(Very Small Aperture Terminal) 전송기술을 개발하였고, ㈜넷커스터마이즈과 ㈜ASAT에 이전하여 상용화 및 해군 위성통신시스템에 적용('19)
 - (ETRI) 6G 핵심기술개발 사업을 통해 저궤도 군집 통신위성 환경에 적합한 무선접속 기술, 핸드오버 기술 등 3GPP 표준 기반 전송기술 개발 중('21~)
- (단말 안테나) 위성통신용 안테나/RF 기술은 상용 제품 판매중에 있으나, 위상 배열 안테나와 핵심 부품 기술은 초기 단계
 - (인텔리안) 해상용 안테나 개발 기업인 인텔리안은 LEO 위성 네크워크 사업자인 원웹에 7.300만 달러 규모의 초소형 사용자 단말 공급 계약 체결¹¹⁴⁾('21.3월)
 - 전 세계 해상용 안테나 시장의 35.6%를 점유하고 있으며, '19년 원웹과 글로벌 위성통신 서비스 제공을 위한 협력 계획을 발표했으며 '21.3월 공급계약을 체결한 소형 사용자 안테나 및 단말은 '22년 공개 예정
 - 원웹과 협력을 통해 기계식 안테나 2기를 이용하여 통신링크 시험에 성공하였으며, 현재 ETRI와 위상배열 안테나/RF 개발을 진행 중
 - (한화시스템) '20.6월 영국의 위상배열 안테나 기업인 Phasor를 인수해 한화페이저를 설립하고 고성능 전자식 안테나 기술 개발 중¹¹⁵⁾

¹¹³⁾ 연세대 광대역전송 네트워크 랩, http://opticom.yonsei.ac.kr/pages/page_70.php

¹¹⁴⁾ https://news.mt.co.kr/mtview.php?no=2021032610394625846

- '20.12월 미국의 Kymeta에 3,000만 달러를 투자해 국내 시장 독점 판권을 확보했고 향후 차세대 전자식 위성통신 안테나 공동개발 추진 예정

2.2.8 종단간 초정밀 네트워크

- - (다산네트웍스, 코위버, 우리넷 등) 5G 인빌딩/프론트홀, 스마트공장 등 적용을 목표로 상용 칩 기반 저지연 TSN 스위치 시스템 시제품 개발('19)116)117)
 - (HFR) 5G 프론트홀 및 백홀용 TSN 스위치(flexiHaul Packet M-Series) 출시('19)118)
 - (ETRI) SKT, 코위버, 우리넷과 공동으로 40Gb/s급 DetNet/TSN 기반 초저지연·무손실 보장 패킷 전달 모듈 및 시스템 연구 시작품을 개발하였고, 서울-대전간 왕복 430km 구간 에서 2.5ms 저지연 및 무손실 전송 성능 확인('20)¹¹⁹⁾
 - (ETRI) 대전-경산간 왕복 560km 구간에 KOREN* 광선로를 활용한 DetNet/TSN 테스트 베드 구축 및 5G Rel-16 산업용 IoT 기반 스마트공장 실시간 원격 제어 및 모니터링 서비스 실증('21)120)
 - * KOREN(Korea Advanced Research Network) : 정부에서 운영하는 초연결 지능형 연구개발망
 - (ETRI) DetNet 서비스 광역화 요구사항 IETF 국제표준화 추진 중('22)121)122)
 - (우리넷) 코위버, ETRI와 공동으로 100Gb/s급 DetNet/TSN 기반 초저지연·무손실 보장 패킷 전달 모듈 개발 및 이를 적용한 16Tb/s급 POTN 시스템 상용화 개발 중('20~)123)

¹¹⁵⁾ http://it.chosun.com/site/data/html_dir/2020/06/08/2020060802249.html

¹¹⁶⁾ 매일경제, https://mk.co.kr/news/stock/view/2019/03/155833/

¹¹⁷⁾ 이투데이, https://www.etoday.co.kr/news/view/1832243

¹¹⁸⁾ HFR, https://hfrnet.com/front/product/productDetail/152

¹¹⁹⁾ 전자신문, https://www.etnews.com/20201110000030

¹²⁰⁾ 연합뉴스, https://www.yna.co.kr/view/AKR20211216117900063?input=1195m

¹²¹⁾ IETF, https://datatracker.ietf.org/doc/draft-ietf-detnet-yang/

¹²²⁾ IETF, https://datatracker.ietf.org/doc/draft-liu-detnet-large-scale-requirements/01/

¹²³⁾ 매일경제, https://www.mk.co.kr/news/stock/view/2020/04/361000/

- (ETRI) KT, SKT, 코위버, 우리넷과 공동으로 인터넷 규모 광역망 종단간 인타임*/온타임**
 보장 가능한 초정밀 네트워크 핵심기술 개발 중('21~)¹²⁴⁾
 - * 인타임(in-time): 네트워크 종단간 최대 지연 요구사항 이하로 트래픽을 전달
 - ** 온타임(on-time): 네트워크 종단간 최대 지연 및 지연 편차 요구사항 이하로 트래픽을 전달

2.2.9 지능형 모바일 코어 네트워크

- 기술 연구 초기단계로 정부 주도의 과제가 '22년부터 시작될 계획이며, 일부 대기업에서 비전 및 개념 수준으로 제시
 - (ETRI) 핀란드 오울루 대학과 "6G 네트워크 아키텍처 및 핵심 요소기술 국제 협력 연구" 진행 중('21.7)
 - 6G 시대의 미래 서비스 사용 사례 및 요구사항 분석을 기반으로 6G 시스템의 진화 구조 및 혁신기술 공동 협력 연구개발 추진
 - * 기술/사회/문화 측면의 미래상을 반영한 6G 비전을 수립하고, 기술요구사항, 핵심 요소기술 도출을 통한 모바일 코어의 전체 시스템 아키텍처 설계를 목표로 함
 - (ETRI) 과기정통부 주관 6G핵심기술개발 사업의 일환으로 "지능형 모바일 네트워크 코어기술 연구개발"과제 추진 예정
 - 4년간 148.8억 규모의 R&D 추진 예정('22.4~'25.12)
 - 미래 서비스 요구사항의 다양성, 복잡성에 대응한 지능형 6G 모바일 네트워크 핵심원천 기술 개발을 목표로 함
 - (삼성전자) "The Next Hyper-Connected Experience for All"을 통해 6G 비전 및 핵심 기술을 제시하고 연구개발을 진행 중¹²⁵⁾
 - 모바일 코어 네트워크 구조에 영향을 줄 수 있는 핵심 기술로 Comprehensive AI, Split Computing 등 제시
 - 미래 네트워크 기술로 연구된 Non-IP 기술로서 ICN(Information-centric Networking, 정보중심네트워킹) 기술에 대한 가능성 제시

¹²⁴⁾ 서울경제, https://www.sedaily.com/NewsView/22NREI5P7K

¹²⁵⁾ 삼성전자(2020), 「The Next Hyper-Connected Experience for All」.

제3장 시장전망

〈 6G 통신 시장 전망 〉

- ※ 기술개발 시작 단계인 6G 통신의 경우 시장 전망은 5G 시장전망과 유사하므로 6G에 새롭게 추가되는 위성통신, 3차원 공간 이동통신 및 6G용 네트워크만을 작성함
- ※ 5G 시장전망은 "5G 기술동향브리프(I.이동통신망 및 II.전달망/액세스망)"를 참고

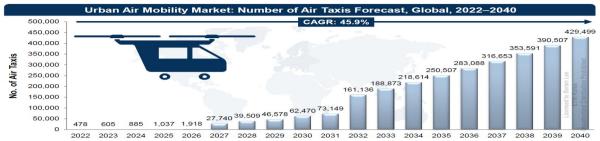
〈 5G 통신 시장전망 〉

- ※ Ericsson에 따르면 '26년경 5G 기반의 ICT 산업 글로벌 매출이 1.3조 달러에 달할 것으로 전망
- ※ KT 경제경영연구소에서 발표한 5G와 관련된 주요 10개 산업분야의 국내 경제 파급효과는 '25년경 25.2조원, '30년경 42.3조원의 사회경제적 가치를 제공할 것으로 전망

3.1 이동통신

- ◎ (3차원 공간 이동통신) 3차원 공간 이동통신 시장은 주요 매개체 및 활용처인 UAV, UAM을 중심으로 형성될 전망
 - (UAV 세계시장) 드론을 중심으로 한 UAV 세계시장은 2019년 111억 달러에서 2024년 254.6억 달러 규모로 연평균 18.1% 성장

〈표 5〉 UAV 세계시장 전망


(단위 : 십억 달러)

구분	2019	2020	2021	2022	2023	2024	CAGR
Small UAVs	2.9	3.5	4.22	5.09	6.13	7.39	20.6%
Medium UAVs	3.88	4.52	5.28	6.17	7.2	8.41	16.7%
Large UAVs	4.31	5.07	5.95	6.99	8.22	9.66	17.5%
합계	11.09	13.09	15.45	18.25	21.55	25.46	18.1%

* 출처 : Mordor Intelligence Analysis, 2019

• (UAM 세계시장) UAM 보급 대수를 기반으로 UAM 세계시장 규모를 추정해보면, 세계시장 규모는 '26년 40억 달러 → '35년 3.250억 달러로 성장 전망

(단위 : 대)

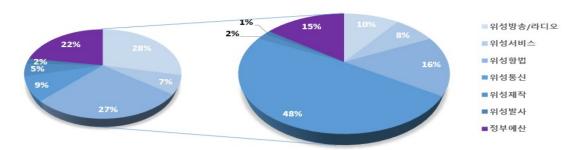
[그림 4] UAM 보급 대수 전망

* 출처 : Frost&Sullivan, 2019)

〈표 6〉 UAM 세계시장 전망

연도	2021년	2026년	2030년	2035년
보급 대수	_	2천 대	6만 2천 대	25만 대
시장규모	_	40억 달러	930억 달러	3,250억 달러

* 출처: ETRI 기술정책연구본부, 2021


3.2 위성통신

- 세계 위성산업 규모는 '18년 3,600억 달러 수준에서 3배 확대되어 '40년 1.1조 달러 규모에 이를 것으로 전망
 - '18년 위성방송, 항법 및 정부투자 중심에서 '40년 위성통신을 위한 지상 네트워크 장비 및 서비스 시장 중심으로 변화하며 성장할 것으로 전망
 - 전체 산업 규모의 증가 추세 대비 정부투자 비중은 '18년 22%에서 '40년 15%로 축소됨에 따라 민간주도로 산업 생태계 전환 지속

〈표 7〉 글로벌 위성 산업 규모 및 전망

(단위: 백만달러)

구분	2018	비중	2020	2030	2040	비중
위성방송/라디오	104,115	29%	107,514	110,554	112,924	10%
위성서비스	24,546	7%	28,219	46,509	84,398	8%
위성항법	98,345	27%	111,195	157,030	177,374	16%
위성 통 신	32,276	9%	39,337	178,168	533,057	48%
위성제작	16,750	5%	17,711	32,136	20,148	2%
위성발사	6,977	2%	7,796	12,143	11,096	1%
정부예산	81,840	22%	85,548	113,195	164,994	15%
합계	364,849	100%	397,320	649,735	1,103,991	100%

[그림 5] '18년 → '40년 시장규모 비중 변화 전망

※ 위성통신 시장: Consumer Broadband, Network Equipment, Second Order Impacts 합계 * 출처: Investment Implications of the Final Frontier('17.10, Morgan Stanley) 재구성

3.3 네트워크

- ◎ (모바일 코어 네트워크) 6G는 클라우드 기반 시장이 지속적으로 증대될 전망이며, 가입자 유형별에 있어서는 기업가입자 시장이 대폭 증대될 전망
 - On-premise 모드는 '20년 2.05억 달러 → '27년 17.5억 달러로, 클라우드 모드는 '20년 5.06억 달러 → '27년 144억 달러 규모로 성장 예상

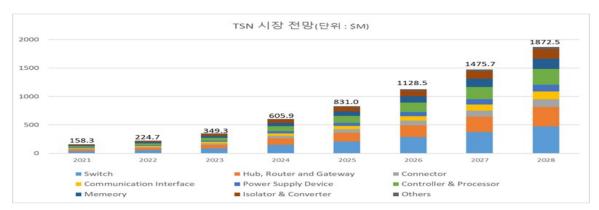
〈표 8〉 도입모드에 따른 글로벌 모바일 코어 네트워크 시장 전망

(단위 : 백만 달러)

	2020	2021	2022	2023	2024	2025	2026	2027	CAGR
클라우드	506.8	957.8	1,893.6	2,977.7	5,111.1	7,593.3	10,861.4	14,397.5	57.1%
On-premise	204.9	317.3	518.2	680.8	994.0	1,258.5	1,537.0	1,747.6	32.9%
합계	711.7	1,275.1	2,411.9	3,658.5	6,105.1	8,851.8	12,398.4	16,145.1	52.7%

* 출처 : Global 5G Core Market Research Report : Forecast to 2027(Market Research Future, 2021)

• 일반 사용자 시장은 '20년 5.639억 달러 → '27년 57.06억 달러 규모로, 기업 대상 시장은 '20년 1.478억 달러 → '27년 104.39억 달러 규모로 성장 예상


〈표 9〉 사용자 군별 글로벌 모바일 코어 네트워크 세계시장 전망

(단위 : 백만 달러)

	2020	2021	2022	2023	2024	2025	2026	2027	CAGR
일반 사용자	563.9	958.5	1,697.8	2,361.8	3,586.6	4,603.1	5,491.8	5,706.2	34.6%
기업 가입자	147.8	316.6	714.1	1,296.7	2,518.5	4,248.6	6,906.7	10,438.9	79.1%
합계	711.7	1,275.1	2,411.9	3,658.5	6,105.1	8,851.8	12,398.4	16,145.1	52.7%

* 출처 : Global 5G Core Market Research Report : Forecast to 2027(Market Research Future, 2021)

- ◎ (초정밀 네트워크) 다양한 분야에서 네트워크 기반 산업 지능화 및 고도화를 추진 중이며, 이로 인해 초저지연·고정밀 네트워크 시장의 폭발적인 성장 예상
 - TSN 시장은 '21년 1.6억 달러 → '28년 18.7억 달러로의 고도 성장이 예상

[그림 6] TSN 세계 시장 전망

* 출처 : Time sensitive Networking Market Global Forecast To 2024(MarketsandMarkets, 2017) 기반 추정

제4장 정책동향

4.1 6G 표준화 동향

🥯 ITU-R은 4G 승인 직후인 '13년에 5G 표준화 작업을 착수하여 비전 및 기준 정립. 기술 접수 및 검증 후 7년만인 '20년 11월에 5G 표준 채택을 완료

[그림 7] ITU 5G 이동통신 기술 표준화 절차

- * 출처 : 5G 국제표준화결과 (ITU-R WP5D 국제회의 결과를 중심으로). 임재우. 2021.3
- 🥯 실제 표준기술을 개발하는 3GPP는 현재 5G+ 표준을 개발 중이며, ITU-R 6G 표준일정을 고려하여 2023년경 6G 표준화 착수 예상

〈 국제 표준화 단체 개요 〉

- 총 7개 참여표준화기관*과 700여개 참여업체**가 활동하는 비법인 형태의 표준개발 파트너쉽 프로젝트(3GPP)에서 개발한 3GPP 표준을 각 국가의 표준으로 제정한 후 그 결과를 유엔 산하 정보통신기술 관련 국제기구인 ITU로 제출함
 - * (한국) TTA, (유럽) ETSI, (미국) ATIS, (일본) ARIB/TTC, (중국) CCSA, (인도) TSDSI
 - ** 삼성전자, LG전자, 퀄컴 등 유럽, 미주, 아시아 지역의 700여개 기업
- ITU에서는 전 세계 표준단체로부터 제출된 결과가 ITU가 제시한 기준을 만족하는지 확인 후, 해당 기술을 국제권고(ITU Recommendation)로 공표

4.2 글로벌 정책 동향

🥯 그간 글로벌 각국은 5G 표준화 선점을 위해 치열한 경쟁을 벌여왔으며. 6G 기술선도를 위한 정책 마련 및 관련 기초연구를 추진

4.2.1 미국

- ☞ 국방부 산하 연구기관인 DARPA는 6G 연구 프로젝트 본격 착수 발표('17.5)
 - "NI WEEK 2016"의 키노트 현장에서 6G 선행연구 프로젝트 시작을 발표
 - 6G 프로젝트에 대해 "활용 가능한 주파수 대역을 찾고 통신 용도에 따라 적합한 주파수 대역을 자동으로 할당하는 것"이라고 언급
 - JUMP(Joint University Microelectronics Programme)을 통해 6G용 기가 헤르츠 및 테라 헤르츠 대역에 대한 연구를 지원
 - 6G를 위한 초고주파 대역 차세대 통신 및 센싱 기술연구를 위해 '18년 1월 산타바바라 주립대에 산학연 연합 연구 기관인 ComSenTer를 설립하고 약 3,182억원 규모의 연구 지원
 - 자율주행 차량 인프라 및 지능형 고속도로에서 최대 500Ghz의 높은 스펙트럼 연구 등을 지원
- ◎ 미국연방통신위원회(FCC)는 spectrum Frontiers('16.7), Spectrum Horizons ('18.2) 정책을 수립하고 선제적으로 mm파 및 Thz 주파수 대역 개척 및 신규서비스 활성화를 추진
 - '17년 OneWeb의 648개의 저궤도 위성, Telesat의 117개의 저궤도 위성, '18년 Space X의 Ka/Ku 대역 4,425개 저궤도위성 등 소형 저궤도 위성을 통한 글로벌 인터넷망 구축 계획을 승인
- 바이든 대통령은 후보시절, 글로벌 기술 리더십 확립을 위해 AI·반도체·6G 등 첨단 기술의 연구개발에 4년간 3000억 달러 투입 공약 제시('21)

4.2.2 중국

- ⑤ 5G 상용화('19.11) 직후 과학기술부・공업정보화부・교육부 등과 함께 '국가 6G 기술연구업무 개시 선포식을 개최('19.11)¹²⁶)
 - '국가 6G 기술 연구개발 추진업무팀'과 '전문가팀'을 각각 출범

¹²⁶⁾ 일본 총무성(2020), 「포스트 5G 시대를 향한 글로벌 주요국 준비 현황」.

국가 6G 기술 연구개발 추진 업무팀		전문가팀		
출범일	2019년 11월 3일	출범일	2019년 11월 3일	
구성	6G 업무 관련 부처 관계자	구성	대학, 연구원, 기업 등 총 37명 전문가	
역할	• 6G 기술연구개발을 담당하면서 국가적 컨트롤 타워 역할 • 6G 연구개발을 이끄는 정책 수립	역할	• 6G 기술전략에 대한 제안과 기술 논의를 통해 중대한 의사결정을 위한 자문 • 6G 연구방향 건의와 기술적 검증	

〈표 10〉 국가 6G 기술연구개발 추진업무팀 및 전문가팀 개요

- - MIIT IMT-2000 무선기술 사업팀의 발표에 따르면 중국은 2018년에 6G에 대한 연구를 시작했으며 2020년부터 본격 개발에 착수해 2030년 상용화를 목표로 함
- 과학기술부(MOST) 주도로 '18년부터 매 5년 단위로 새로운 네트워크 기술, 광·위성통신 등과 관련된 6G 국책 연구를 추진 중이며, '19년에는 공식 6G 전담기구 출범

4.2.3 EU127)

- ⑥ 6G 주도권 선점을 위한 회원국들의 관심을 환기시키고, 제조·교통 분야에서 6G 활용전망 및 선결과제 제안('20)
 - 6G 통신을 선도하기 위한 조속한 투자를 강조하였으며, 제조 공장의 모든 loT 기기들이 6G로 연결되고, 6G 기반의 차량간 통신 시대를 전망
 - 테라비트급 대용량 데이터의 초고속 처리를 위한 고성능·고효율 칩 설계 기술 확보 강조
- 핀란드 오울루 대학 주도로 '18년부터 6G 플래그십을 설립하여 매년 6G 국제회의(Wireless summit) 개최
 - 오울루·알토 대학, 핀란드 기술연구센터, 노키아 등 기업체 간 협업체계(6G 플래그십)를 구성하여 내재화된 보안기술 기반의 6G 연구개발 착수

¹²⁷⁾ IITP(2020), 「ICT Spot Issue - 주요국, 6G 주도권 선점 경쟁 본격화」.

4.2.4 일본

- - 대학 연구진과 NTT docomo, 도시바 등 민간 기업이 참관한 관민 합동 연구회인 'Beyond 5G 추진전략 간담회'를 발족하고, 5G 이후 시장 전망과 종합 전략 수립을 논의
 - Beyond 5G 추진전략이 지향하는 기본 방침은 ①글로벌 퍼스트, ② 혁신을 창출하는 에코 시스템 구축, ③자원의 집중투자이며, 이를 뒷받침하는 연구개발 전략, 지재·표준화전략, 추진전략을 통해 국제 경쟁력을 강화한다는 구상
 - Beyond 5G를 위한 요구 기능별 주요내용 및 일본이 강점을 가지거나 적극적인 개발을 추진하고 있는 기술을 제시

(표 II/ Deyona 30을 위인 기능 및 구요 개월기술						
기능	주요 내용	주요 개발 기술				
초고속 대용량	• 액세스망 통신속도는 5G의 10배 • 코어망 통신 속도는 현재의 100배	테라헤르츠				
초저지연	• 5G의 1/10 수준의 저지연율 • 사이버-물리 시스템 완전 동기화 • 보안 네트워크와 고도 동기화	시공간 동기화 (사이버 공간 포함)				
초다수동시접속	• 다수동시접속 수는 5G의 10배	센싱				
초저소비전력	• 현재의 1/100 수준 저소비 전력	All-Fiber 네트워크, 저소비전력 반도체				
초안전 및 신뢰성	• 상시 보안 확보 • 재해 및 장애 발생 시 즉각적 복구	양자 암호				
자율성	• 자율적으로 동작하는 기기들 간의 자동 연계 • 유무선을 넘어 최적 네트워크 구축	완전 가상화				
확장성	• 위성 및 성층권통신시스템(HAPS)와 심리스한 접속(우주 및 해양 포함) • 기기 간 상호 연동으로 모든 장소에서 통신	HAPS, 포용적 인터페이스				

〈표 11〉Beyond 5G를 위한 기능 및 주요 개발기술

◎ 한편, '19년 말 발표한 새로운 종합경제대책에서도 포스트 5G 지원 방안을 포함시키며 차세대 통신 산업 육성 의지를 표출

^{*} 출처 : 주요국 6G 주도권 선점 경쟁 본격화, IITP 이은옥, 2020.7

4.3 국내 정책 동향

- ⑥ 6G 글로벌 시장 주도 기반 마련을 본격화하기 위해 "6G 시대를 선도하기 위한 미래 이동통신 R&D 추진전략"수립('20)¹28)
 - (비전) 상상이 현실이 되는 6G 시대 선도
 - (추진 전략/방안) ①차세대 기술선점, ②고부가가치특허 확보, ③연구기반 조성
 - (①차세대 기술선점) 6대 기술분야(초성능, 초대역 등)·10대 전략과제(Tbps무선통신, Tbps 광통신 등) 추진, 국제 공동연구 및 기술교류, 시범서비스 병행
 - (②고부가가치 특허 확보) 국제표준 반영, 국제 표준화 리더십 확보, R&D+표준+특허 패키지 지원
 - (③연구기반 조성) 6G 부품·장비 국산화, 고급·실무인력 육성
 - (추진 체계) 과기정통부, 통신·제조업체, 중소기업, 학계·연구기관 및 민간전문가 등이 참여하는 '6G R&D 전략위원회' 및 하위 사업단 구성
 - (6G R&D 전략위원회) 사업 추진현황·성과 공유, 사업 전반의 목표 검증·변경에 대한 승인을 통해 6G 사업의 추진 방향 결정
 - (사업단) 6G 중장기 기술로드맵 수립, 과제기획·평가, 성과 관리
 - (하위 분과) 3개 분과(기술/표준, 주파수, 글로벌 협력)로 구성하여 글로벌 기술개발 동향 및 R&D 추진현황 기반 롤링플랜 수립

[그림 8] 6G R&D 추진 체계

¹²⁸⁾ 과기정통부(2020), 「6G 시대를 선도하기 위한 「미래 이동통신 R&D 추진전략」(안)」.

- ⑥ 6G 위성통신 기술강국 도약을 위해 "6G 시대를 준비하는 위성통신기술 발전 전략"수립('21)¹²९)
 - 위성 통신 기술력을 선도국 대비 84%('20) → 90%('30)를 목표로 ①6G시대 위성-지상 통신 통합 가속화, ②5G 기반 저궤도 위성통신 역량 확보, ③정지궤도 위성통신 경쟁력강화,
 ④ 위성통신 성장 생태계 조성 전략 수립
 - 이를 위해 총 8,280억원 규모의 예산을 투입할 계획이며, 정지궤도 위성개발 사업이 '21년 부터 추진, 저궤도 5G 및 6G 위성개발 사업은 예비타당성조사 추진 예정
- ◎ '19년 핀란드와 6G 공동개발을 위한 MOU를 체결하는 등 국가 전략적 6G 개발 대응체계 구축
 - 한국은 핀란드와 6G 이동통신 기술 공동개발을 추진하여, 5G, 인공지능, 빅데이터 등 4차 산업혁명 분야에서 포괄적 협력을 강화할 전망
 - 양국은 6G 무선접속·네트워크 기술, 5G와 비욘드5G 이동통신 기술, 6G 이동통신기술 홍보. 이 외 합의된 다른 통신기술 영역에서 R&D 협력을 추진
 - 6G 연구를 세계에서 가장 먼저 시작한 양국은 서비스 기본개념과 연구과제를 공동 도출할 계획
 - 세계적으로 초기단계인 6G 연구성과를 공유하는 정기 교류회를 개최하고, ETRI가 시작한 6G 사업과 오울루대 '6Genesis' 프로젝트 간 공동 참여 기회를 모색
- 한국-미국은 한미정상회담을 진행 후 공동성명에서 5G, 6G, Open-RAN 기술 등 신흥 기술 분야에서 혁신을 주도함으로써 미래 지향적 파트너십을 발전시켜 나가기 위해 협력할 것을 약속('21.5)
- 과기부-유럽집행위는 차세대 이동통신 네트워크 협력 촉진을 주제로 '한-유럽 B5G 워크숍'을 개최('21.6)
 - 양국의 디지털 정책 동향, 이동통신(5G, 6G) 기술개발·표준화 동향 소개 및 향후 협력방안 등을 논의
 - 6G 이동통신 연구개발 추진 및 국제표준화 리더십 확보 노력 등 6G 기술·표준 경쟁력 확보를 위한 양국의 준비상황을 소개하고, 향후 협력 필요성 강조

¹²⁹⁾ 관계부처합동(2021), 「6G 시대를 준비하는 위성통신기술 발전전략」

제5장 R&D 투자동향

5.1 정부 R&D 투자 동향

- 🥯 6G 분야 정부 R&D 주요 사업은 "6G 핵심기술개발사업"으로. 국가 네트워크 인프라의 안전성 확보 및 국내 통신 단말과 장비의 핵심 부품 국산화를 지원
 - 6G 주요 성능 지표를 만족하기 위해 이동통신, 위성, RF, 광통신, 네트워크 분야에 8개 내역사업, 11개 과제를 통해 '21년부터 향후 5년간 총 1,438억원 투입 계획
 - '22-'26 중기 당초 예산을 살펴보면. '22년부터 '25년까지 균형감있는 예산집행 계획 중
 - 산업 초기단계 기술의 특성 상 출연연 및 대학에서 연구를 주관하고, 주요 통신 기업들이 협력으로 참여

〈표 12〉6G 핵심기술개발사업 내 주요 내역사업 현황

(단위 : 백만원)

Manda	사업 기간	중기 예산 현황				
내역사업명		'21	'22	'23	'24	'25
Tbps급 무선통신 기술	'21~'25	5,039	5,385	5,792	5,792	5,792
THz 대역 주파수 개척 및 안전성 평가 기술	'21~'25	1,147	2,021	1,712	2,065	1,712
3차원 공간 이동통신 기술	'21~'25	962	2,879	3,287	3,570	3,570
THz 대역 RF 핵심 기술	'21~'24	2,745	2,712	2,531	2,531	
지능형 무선 액세스 기술	'21~'25	2,181	3,654	4,036	4,363	4,145
Tbps급 광통신 인프라 기술	'21~'25	1,831	3,203	3,203	3,432	3,203
종단간 초정밀 네트워크 기술	'21~'25	1,147	2,582	3,155	3,155	3,155
3차원 공간 위성통신 기술	'21~'25	1,352	4,284	4,409	4,409	4,433
지능형 6G 모바일 코어 네트워크 기술	'22–'25		4,063	4,527	4,527	4,063
합계	17,204*	30,783	32,652	33,844	30,073	

※ '21년 기평비 800 백만원 포함

〈표 13〉6G 핵심기술개발사업 내 주요 과제 현황

			참여기관		'21년 예산
과제명	주관기관	구분	기관	연구단계	(백만원)
6세대 Tbps급 데이터 전송율을	KAIST	산	LG전자 외 1개		800
지원하는 sub-THz 대역 무선 전송 및 접속 요소 기술 개발		연	KRISS		
	ETRI	산	삼성전자 외 5개	응용연구	4,239
Tbps급 무선통신 기술 개발		학	단국대 외 4개		
		기타	한국네트워크산업협회		
THz 대역 주파수 개척 및	ETRI	산	삼성전자	응용연구	1,147
안전성 평가 기술 개발		학	고려대	등등 인구	
3차원 공간 이동통신 기술 개발	ETRI	학	인하대 외 1개	응용연구	962
THz 대역 RF 핵심 부품 개발	ETRI	학	대구대		2,245
저전력 MIMO 및 고효율 공간합성 QAM 기반 6G RF 전단 핵심기술개발	성균관대	학	서울대 외 1개	응용연구	500
지능형 무선 액세스 기술 개발	ETRI	학	포항공대 외 2개	응용연구	1,681
지능형 6G 무선 액세스 시스템	고려대	학	아주대 외 2개	기초연구	500
Throp 과트시 이파크 기수 개바	ETRI	산	오이솔루션 외 3개	0047	1,831
Tbps급 광통신 인프라 기술 개발		학	KAIST	응용연구	
조다가 둥저미 네트이그 기스 개바	ETRI	산	KT 외 4개	0047	1,147
종단간 초정밀 네트워크 기술 개발		학	상명대 외 2개	응용연구	
3차원 공간 네트워크 기술 개발/3차원	ETDI	산	KT 외 1개	O D C C C C C C C C C C C C C C C C C C	1,352
공간 위성통신 기술 개발	ETRI	학	전북대 외 1개	응용연구	
지능형 6G 모바일 코어 네트워크 기술			미정		

제6장 결론

6.1 요약 및 정리

- ⑤ 5G 상용화 이후, "5G 고도화", "네트워크 완전 지능화", "통신 커버리지 초월"
 실현을 위해 글로벌 기업들은 최근 주요 비전을 제시
 - (화웨이) "2020년대 연결된 사물 → 2030년대 연결된 지능" 비전 제시
 - (삼성전자) "Internet of Skill, Super eMBB·mMTC·URLLC" 비전 제시
 - (도코모) "Extreme High data rate·coverage·latency·low energy" 비전 제시
- 글로벌 각국에서는 6G 시장 선점을 위해 Tbps 무선통신, 3차원 이동통신 등9개 기술분야에 대한 연구를 활발히 진행 중
 - (Tbps 무선통신) 6G 트래픽 처리를 위해, 모뎀, 프로토콜, 전송링크 등 테라헤르츠 대역의 기초적인 무선통신기술 개발이 진행 중이며, 제한된 상황에서 시연 결과 발표
 - (3차원 이동통신) UAM/UAV 등 다양한 공간이동체를 활용한 무선통신기술을 개발 중이며, 6G 요구사항 중 하나로 "Extreme Coverage(고도 10km)"를 고려
 - (지능형 무선액세스) 3GPP, ORAN 등에서 RAN 지능화, 기계학습기반 무선전송 등에 대한 표준화 연구가 진행 중이며, 글로벌 각국에서 기계학습 기반의 채널추정, 자원할당, 빔포밍 등 지능형 무선 액세스 분야에서 연구가 진행 중
 - (Thz RF부품) 고정 통신용 광소자 기반 단일채널 송수신 RF 부품이 시제품 수준으로 개발 되었고, 최근 CMOS 기반 AESA 구조 다채널 위상배열 칩이 미국 대학 중심으로 개발 중
 - (THz 주파수) Thz 대역 전파 특성, 채널 모델링, 인체 영향성 연구는 일부 대학 중심으로 기초 연구를 진행 중에 있으며, 최근 40Ghz 이하 전자파에 대한 기기 안정성 기준이 마련

- (Tbps 광통신) 전송용량 극대화를 위한 직접수신기술 고도화 및 코히어런트 기술에 대한 연구와 인도어 환경에서의 대용량 데이터 수용을 위한 DAS 기술 연구가 진행 중
- (3차원 위성통신) 최근 위성통신산업 성장환경 조성에 따라 위성사업자 중심으로 우주 인터넷 경쟁이 시작되었으며, 송수신 주요 도구인 단말 안테나에 대한 연구가 활발히 진행 중
- (종단간 초정밀 네트워크) 소규모 근거리망용 TSN 지원 칩셋과 시스템이 출시되었고, 시간 확정형 네트워킹(DetNet) 등 초저지연·고정밀 서비스 제공 범위 확장을 위한 기술 및 국제 표준 개발 중
- (지능형 모바일 코어 네트워크) 지능형 코어의 경우 기초적인 단계로, 주요 개념, 유즈케이스, 가능한 구도 등이 제시되고 있는 수준
- 미국, 중국, 한국 등 글로벌 통신 선도국 정부에서도 6G 산업 선도 및 표준화주도를 위해 관련 정책들을 적극 마련 중
 - (미국) DARPA에서 6G 연구 프로젝트를 본격 착수하였으며('17.5), FCC는 spectrum horizons('18.2) 등 정책을 수립하고 선제적으로 mm파 및 Thz 주파수 대역 개척 추진
 - (중국) 과학기술부·공업정보화부·교육부 등과 함께 국가 6G 기술연구업무 개시 선포식을 개최('19.11)하였고, 과학기술부 주도로 6G 국책연구를 추진 중
 - (EU) 회원국들의 관심을 환기시키고, 제조교통 분야에서 6G 활용전망 및 선결과제를 제안 ('20)하였으며, 핀란드 오울루 대학 주도로 매년 6G 국제회의 개최
 - (일본) 6G 종합전략인 'Beyond 5G 추진전략'을 마련('20.4) 하였으며, '19년 말 발표한 새로운 종합경제대책에서도 포스트 5G 지원방안을 포함
 - (한국) 핀란드와 6G 공동개발을 위한 MOU 체결('19), "6G 시대를 선도하기 위한 미래 이동통신 R&D 추진전략"을 수립('20)하는 등 6G 시장 선점을 위해 국가 차원에서 노력하고 있으며, 최근 "6G 핵심기술개발사업('21-'25, 1,438억)"을 통해 대규모 R&D 사업을 추진 중

6.2 정책제언

◎ (6G 총괄) 기술 및 미래 산업 선점, 표준화 주도 등 6G 통신의 주도국으로 도약하기 위해 전략적인 6G R&D 투자 필요

- 6G 통신이 대중화 되기 위해서는 관련 서비스와의 연계 개발이 중요할 것으로 판단되는바. 6G 핵심기술 개발 외에도 6G 기반 새로운 지능형 서비스 기술 개발이 병행될 필요가 있음
- 초기는 정부견인, 중기 이후 민간 투자를 연계한 선순환적 생태계 구성을 위해 정부 R&D 초기부터 민간기업 참여로 기술을 공동 개발하고, 표준화 착수 이후는 민간기업 주도로 상용 기술을 확보하는 전략적인 접근 필요
- 국내 우위 기술 기반의 표준화 주도권 확보가 6G 시장 선점의 첫 단추이므로, 기술개발이 표준 및 특허로 이어질 수 있도록 연계성을 강화하고 저변 확대를 위한 노력 필요
- 🕯 (3차원 공간 이동통신) UAM/UAV의 경우 공공산업에 선제적 활용이 가능한 신산업 분야로 공공조달 등을 통해 테스트베드 역할을 수행할 수 있도록 정부 주도의 포괄적 노력이 필요
 - 통신 고립지역 재난상황 안내, 드론 순찰 등 공공분야 적용 확대를 통한 선제적 시장 창출 전략이 필요
 - 안전·보안·개인정보 등의 이유로 법·제도적으로 규제되는 분야이므로 산업이 본격 확산되기 전 비용과 편익을 균형감있게 고려한 법적 근거 마련 필요
- 🦚 (Thz 주파수) Tbps급 초성능 통신기술 개발 외에도 연구목적의 시험용 주파수. 허가, 주파수 분배 및 할당, 안전성 연구 등에도 정부의 정책적 지원 필요
 - 고가의 측정장비 구축. 시험 주파수 허가 등의 어려움으로 새로운 전파자원에 대한 산업체 투자가 저조할 수 있으므로 장기간/지속적인 정부차원의 R&D 지원이 필요함
 - THz 대역의 인체 영향에 대한 연구가 미흡하므로 국민 안전 확보를 위한 유관기관 협조 및 관련 연구개발 촉진이 필요
- 🐃 (네트워크) 국내 산업체의 경쟁력 확보를 위해 차별화된 IPR 확보가 가능하도록 산학연 협력 R&D에 대한 정부 지원 요구됨
 - R&D 투자 여력이 부족하여 가용 칩셋 기반의 제품화를 추진하는 국내 네트워크 장비기업이 차별화된 기술 경쟁력을 확보하기 위해 학 연의 혁신/도전형 기초연구를 통한 기술지원이 필요
 - 코어 네트워크에 대한 방향성은 도출되어 있으나, 세부 구조는 추후 표준화 본격화 시기에 제시될 것으로 판단되므로, 다양한 구조에 대한 연구를 통한 선제적 IPR 확보 필요

참고문헌

※ 참고문헌의 일부만 기재하며, 자세한 참고 문헌은 본문 참조

☞ 국내 문헌

- 과학기술정보통신부(2019), 「6G 핵심기술개발사업 기획보고서」
- 대한전자공학회지(2020), 「6G 통신에 대비한 RF 기술동향」.
- 한국정보통신기술협회(2021), 「ICT Standard Weekly 제 1067호」.
- 관계부처 합동(2021), 「초소형위성 및 6G 위성통신기술 개발방안」.
- 포토닉스 기반 THz 근거리 전송기술, 전자통신동향분석, 2019
- 김현수 외 (2019), 「포토닉스 기반 테라헤르츠 무선통신 기술 동향」, 전자통신동향분석, 34(3), pp.75-85.
- 테라헤르츠 기술 워크숍 (2021), 「Sub-THz RF systems for Mobile Backhaul Links」,
- 과학기술정보통신부(2020), 「과기정통부, 5세대(5G) 이동통신과 테라헤르츠에 적용될 전파모델을 국제표준으로 추진」.
- 권덕수 (2021) 「근역장 전력밀도 측정을 위한 프로브 설계」, 한국전자파학회 하계학술대회.

ᅠ 해외 문헌

- IEEE(2019), 「6G Wireless Summit」
- O-RAN Alliance, O-RAN.WG1 O-RAN Architecture Description
- A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu and D. Tujkovic, (2018), 「Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems,」 in IEEE Access, vol. 6, pp. 37328-37348.
- Soltani, Mehran, et al. (2019), 「Deep learning-based channel estimation.」 IEEE Communications Letters 23.4: pp. 652-655.
- Vijaya Yajnanarayana et al. (2020), 「5G Handover using Reinforcement Learning.」 IEEE 3rd 5G World Forum (5GWF).

|저자소개|

이 승 필

한국과학기술기획평가원 성장동력사업센터 부연구위원

형 준 혁

한국과학기술기획평가원 성장동력사업센터 연구원

Tel: 043-750-2619 E-mail: jhhyoung@kistep.re.kr

|편집위원소개|

류 영 수 선임연구위원

진 영 현 연구위원

김 승 균 연구위원

박 종 록 연구위원

이 강 수 부연구위원

한국과학기술기획평가원 사업조정본부

Tel: 043-750-2503 E-mail: lks@kistep.re.kr

[KISTEP 브리프 발간 현황]

발간호	제목	저자 및 소속	비고
01	시스템반도체	채명식 (KISTEP)	기술동향
02	미 하원「2022년 미국 경쟁법」주요 내용과 시사점	최창택 (KISTEP)	혁신정책
03	메디컬 섬유소재	정두엽 (KISTEP)	기술동향
04	2020년 한국의 과학기술논문 발표 및 피인용 현황	한웅용 (KISTEP)	통계분석
05	2020년 신약개발 정부 R&D 투자 포트폴리오 분석	강유진·김주원 (KISTEP)	통계분석
06	바이오헬스 정책·투자동향	김종란·강유진·홍미영 (KISTEP)	기술동향
07	러시아-우크라이나 사태에 따른 과학기술 동향과 시사점	김진하·이정태 (KISTEP)	혁신정책
08	미래 스마트 팩토리 유망 서비스	KISTEP·ETRI	미래예측
-	2030 국가온실가스감축목표에 기여할 10대 미래유망기술	이동기 (KISTEP)	이슈페이퍼 (제323호)
09	바이오연료	박지현·강유진 (KISTEP)	기술동향
10	2020년 국내 바이오산업 실태조사 주요 결과	한웅용 (KISTEP)	통계분석
11	일본 과학기술·경제안전보장전략 주요내용과 시사점	김규판(KIEP) 김다은·홍정석(KISTEP)	혁신정책
12	6G 통신 기술	이승필·형준혁 (KISTEP)	기술동향