2022 기술수준평가
• 연구진

- 연구책임자
 이희권 (한국과학기술기획평가원 연구위원)

- 참여연구원
 박창현 (한국과학기술기획평가원 연구위원)
 정의진 (한국과학기술기획평가원 연구위원)
 이성훈 (한국과학기술기획평가원 연구원)

- 외부연구진
 권민성 (시안범률특허사무소 팀장)
 박명규 (시안범률특허사무소 팀장)
 김우찬 (코리아리서치센터 팀장)

기관 2023-054 2022 기술수준평가
(연구기간 : 2023.1.1. ~ 2023.12.31)

• 발행인 : 정병선

• 발행처 : 한국과학기술기획평가원
 (27740) 충청북도 음성군 맹동면 원종로 1339
 Tel) 043-750-2300 Fax) 043-750-2680

• http://www.kistep.re.kr

• 인쇄 : 주식회사 동진문화사
요 약 문

■ 기술수준평가 개요

☑ (대상) 과학기술 발전을 촉진하고 기술수준을 점검하기 위해 국가적 핵심기술(11대 분야 136개 기술)에 대해서 2년 주기로 조사·분석 실시

< 참고 > 기술수준평가 추진 근거

- 과학기술기본법 제14조 ② 정부는 과학기술의 발전을 촉진하기 위하여 국가적으로 중요한 핵심기술에 대한 기술수준을 평가하고 해당 기술수준의 향상을 위한 시책을 세우고 추진하여야 한다.
- 과학기술기본법 시행령 제24조(기술수준평가) ② 핵심기술정보통신부 장관은 법 제14조제2항에 따라 관계 중앙행정기관의 장과의 협의를 거쳐 소관 분야에 대한 기술수준평가를 2년마다 실시하여야 하며, 그 결과를 국가과학기술자문회의에 보고하여야 한다.

〈 11대 분야별 ’22 수준평가 대상 전체기술 현황 〉

<table>
<thead>
<tr>
<th>구분</th>
<th>계</th>
<th>11대 전체 분야</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>건설교통</td>
<td>재난안전</td>
</tr>
<tr>
<td>전체대상기술</td>
<td>136*</td>
<td>13</td>
</tr>
</tbody>
</table>

☑ (내용) 평가 대상기술에 대한 주요 5개국(한국, 중국, 일본, EU, 미국)의 기술수준(2) 및 기술격차(4)를 중심으로 평가
- 최고기술 보유국에 대비하여 국가별 평가하고, 정책제언 등을 제시

☑ (방법) 정성평가(전문가 멤버조사)와 정량분석(논문·특허분석) 실시
- (정성평가) 산·학·연 전문가(1,360명) 대상으로 2라운드 멤버조사를 통해서 기술별 기술수준·격차, 기술동향, 정책제언 등을 평가
- (정량분석) 대상기술 관련 주요국 논문·특허의 활동 추이와 기술력 등을 파악할 수 있는 지표 등 활용하여 분석

(1) 기술수준평가 연도별 대상기술

<table>
<thead>
<tr>
<th>연도</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>대상기술</td>
<td>3차 과학기술기본계획 120개 국가전략기술</td>
<td>4차 과학기술기본계획 120개 중점과학기술</td>
<td>5차 과학기술기본계획 50개 국가전략기술 + 86개 기술</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 제15차 과학기술기본계획상의 기술전략기술과 유사·증복되지 않는 기술(86개)
2) 기술수준 정의: 최고기술 보유국의 기술수준을 100%로 보았을 때의 상대적 기술수준
3) 기술격차 정의: 최고기술 보유국의 기술수준에 도달하는데 소요될 것으로 예측되는 기간
주요 결과

- 전체대상기술(136개) 평가 결과, 미국(100%) 최고기술 보유국, EU(94.7%), 일본(86.4%), 중국 (82.6%), 한국(81.5%) 순으로 평가
- 최근 2년간(20~22) 한국(80.1 → 81.5)과 중국(80.0 → 82.6)의 기술수준이 상승하고, 일본(87.3 → 86.4)과 EU(95.6 → 94.7)의 기술수준은 하락세

1 전체대상기술(136개) 수준 평가

(총괄) 최고기술 보유국(미국) 대비, 한국의 '22년 기술수준은 81.5%로 '20년(80.1%) 대비 1.4%p
향상되고, 한국의 '22년 기술격차는 3.2년으로 '20년(3.3년) 대비 0.1년 단축한 것으로 나타남

주요 5개국 전체대상기술 기술수준·격차 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>2022</td>
<td>100.0</td>
<td>0.0</td>
<td>81.5</td>
<td>3.2</td>
<td>82.6</td>
</tr>
<tr>
<td>2020</td>
<td>100.0</td>
<td>0.0</td>
<td>80.1</td>
<td>3.3</td>
<td>80.0</td>
</tr>
</tbody>
</table>

- 한국과 중국의 기술수준은 2012년부터 지속적인 상승을 나타내며, 일본은 2016년도 이후부터 하락세로 나타남
 *
 2010년도 이전에는 수준평가 결과 수차 도출 방식이 상이하여 추세 비교가 불가

주요 5개국 기술수준·격차 변동 추이(136개 기준)

<table>
<thead>
<tr>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(분야별) 한국은 ‘20년 대비하여 총 11개 분야 중 9개 분야’에서 기술 수준이 향상되고, 2개 분야’에서 기술 수준이 하락한 것으로 나타남

* (9개 향상) 건설·교통, 재난안전, 국방, 기계·제조, 소재·나노, 농림수산·식품, 생명·보건의료, 에너지·자원, 환경·기상 / ** (2개 하락) 우주·항공·해양, ICT-SW

<table>
<thead>
<tr>
<th>주요 5개국 전체기술 분야별 수준(%) 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022년도</td>
</tr>
<tr>
<td>11대 전체 분야별(136개 기술)</td>
</tr>
</tbody>
</table>

- 한국은 주요 5개국 중 8개 분야’에서 4위로 보이고, 3개 분야’에서 5위로 나타남(‘22년 기준)

 * (4위, 8개 분야) ▪ 건설·교통, ▪ 재난안전, ▪ 기계·제조, ▪ 소재·나노, ▪ 농림수산·식품, ▪ 생명·보건의료, ▪ 환경·기상, ▪ ICT-SW / ** (5위, 3개 분야) ▪ 우주·항공·해양, ▪ 국방, ▪ 에너지·자원

<table>
<thead>
<tr>
<th>주요 5개국 전체대상기술 11대 분야별 수준·격차 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>분야</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>건설교통</td>
<td>100.0</td>
<td>0.0</td>
<td>85.3</td>
<td>2.3</td>
<td>82.8</td>
</tr>
<tr>
<td>재난안전</td>
<td>100.0</td>
<td>0.0</td>
<td>81.3</td>
<td>2.6</td>
<td>78.1</td>
</tr>
<tr>
<td>우주·항공·해양</td>
<td>100.0</td>
<td>0.0</td>
<td>61.6</td>
<td>9.8</td>
<td>79.4</td>
</tr>
<tr>
<td>국방</td>
<td>100.0</td>
<td>0.0</td>
<td>76.7</td>
<td>4.3</td>
<td>82.3</td>
</tr>
<tr>
<td>기계·제조</td>
<td>100.0</td>
<td>0.0</td>
<td>82.1</td>
<td>2.8</td>
<td>78.9</td>
</tr>
<tr>
<td>소재·나노</td>
<td>100.0</td>
<td>0.0</td>
<td>83.3</td>
<td>2.6</td>
<td>80.5</td>
</tr>
<tr>
<td>농림수산·식품</td>
<td>99.5</td>
<td>0.0</td>
<td>82.5</td>
<td>3.4</td>
<td>79.2</td>
</tr>
<tr>
<td>생명·보건의료</td>
<td>100.0</td>
<td>0.0</td>
<td>79.4</td>
<td>2.9</td>
<td>78.9</td>
</tr>
<tr>
<td>에너지·자원</td>
<td>100.0</td>
<td>0.0</td>
<td>84.5</td>
<td>3.2</td>
<td>85.2</td>
</tr>
<tr>
<td>환경·기상</td>
<td>100.0</td>
<td>0.0</td>
<td>83.9</td>
<td>3.5</td>
<td>78.6</td>
</tr>
<tr>
<td>ICT-SW</td>
<td>100.0</td>
<td>0.0</td>
<td>82.6</td>
<td>2.0</td>
<td>87.9</td>
</tr>
</tbody>
</table>

4) ‘22년도부터 대형 단단연소 사물인터넷, 달착륙·표면 탐사 등 미래·도전적인 기술로 대폭 변경되어 이전 평가와 단순 비교가 불가함
2 전체대상기술(136개 기준) 정량분석

☐ (분석대상) 최근 10~12년간 주요국 논문·특허 중 전체대상기술과 연관된 데이터를 통해 논문·특허 점유율, 중요논문·특허비율, 논문·특허 영향력 등 다양한 양·질적 지표 15개를 활용하여 분석

〈 정량분석 대상 데이터 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한, 중, 일, EU(영국 포함 28개국), 미</td>
<td>한, 중, 일, EU(영국 포함 28개국), 미</td>
</tr>
<tr>
<td>데이터</td>
<td>SCOPUS 등재 논문</td>
<td>공개 특허 / 등록·출원 특허</td>
</tr>
<tr>
<td>기간</td>
<td>공개일 기준 최근 12년(‘10.1~‘21.12)</td>
<td>출원일 기준 최근 10년(‘11.1~‘20.12)</td>
</tr>
<tr>
<td>유 효 간수</td>
<td>556,493 건</td>
<td>1,517,535 건</td>
</tr>
</tbody>
</table>

☐ (분석결과) 한국은 주요 5개국 중 논문·특허의 증가율이 중국에 이어 2위 수준으로 보이고 있으며, 논문·특허 질적 지표는 전반적으로 4위권에 해당

〈 전체대상기술 관련 논문·특허 지표 분석 결과 〉

<table>
<thead>
<tr>
<th>논문</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문점유율(%)</td>
<td>논문증가율(%)</td>
</tr>
<tr>
<td>미국</td>
<td>3위 20.3</td>
<td>4위 185.5</td>
</tr>
<tr>
<td>한국</td>
<td>5위 5.4</td>
<td>2위 295.7</td>
</tr>
<tr>
<td>중국</td>
<td>2위 33.8</td>
<td>1위 445.2</td>
</tr>
<tr>
<td>일본</td>
<td>4위 6.0</td>
<td>5위 147.4</td>
</tr>
<tr>
<td>EU</td>
<td>1위 34.6</td>
<td>3위 218.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허점유율(%)</td>
<td>특허증가율(%)</td>
</tr>
<tr>
<td>미국</td>
<td>2위 13.6</td>
<td>3위 407.1</td>
</tr>
<tr>
<td>한국</td>
<td>3위 13.4</td>
<td>2위 1505.2</td>
</tr>
<tr>
<td>중국</td>
<td>1위 55.8</td>
<td>1위 2037.8</td>
</tr>
<tr>
<td>일본</td>
<td>4위 9.9</td>
<td>4위 371.8</td>
</tr>
<tr>
<td>EU</td>
<td>5위 7.4</td>
<td>5위 218.4</td>
</tr>
</tbody>
</table>

5) 논문 발행건수가 많은 발표기관들을 제외한 참여도를 기반으로 연구역량·경쟁력과 다양성 측정
6) 개별 연구자의 연구 압축과 성취, 학계에 미치는 영향력(논문 인용 횟수 등)을 자연수로 표현
7) 주요 4개국(한국, 중국, 일본, EU, 미국 중 4곳)에 동시에 출원한 특허의 비율을 기반으로 시장성률 측정
8) 발명의 수(청구량)를 기반으로 국가별·연구주체별 질적 경쟁력 측정
3 전체대상기술(136개) 중 국가전략기술(50개) 세부 수준평가

- 유(총괄) 미국(100.0%)이 최고기술 보유국, EU(92.3%), 중국(86.5%), 일본(85.2%), 한국(81.7%) 순으로 평가

〈 주요 5개국 국가전략기술 기술수준·격차 현황 〉

<table>
<thead>
<tr>
<th>구분</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>국가전략기술</td>
<td>100.0</td>
<td>0.0</td>
<td>81.7</td>
<td>3.0</td>
<td>86.5</td>
</tr>
</tbody>
</table>

- 한국의 최고기술 분야는 이차전지로 나타남
- 한국의 미국 대비 기술격차가 큰 기술은 우주항공·해양, 양자 분야인데 매우 도전적이거나 반드시 확보해야 하는 필수기술로 평가됨
- '22년도 평가시 대형 다단연소 사이클론, 우주 관측 센싱, 달착륙·표면 탐사, 첨단 항공 가스터빈 엔진 부품 등 미래·도전적인 기술로 대상기술 대폭 변경
- 한국은 총 12개 분야에서 주요 5개국 중 1위로 평가된 분야는 1개고, 2위는 1개, 3위는 2개, 4위와 5위로 나타난 분야는 각각 4개임

〈 주요 5개국 국가전략기술 12대 분야별 수준·격차 비교 〉

<table>
<thead>
<tr>
<th>분야</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>반도체·디스플레이(22)</td>
<td>100.0</td>
<td>0.0</td>
<td>89.0</td>
<td>1.3</td>
<td>84.4</td>
</tr>
<tr>
<td>이차전지</td>
<td>87.1</td>
<td>1.1</td>
<td>100.0</td>
<td>0.0</td>
<td>94.3</td>
</tr>
<tr>
<td>첨단모빌리티</td>
<td>100.0</td>
<td>0.0</td>
<td>84.2</td>
<td>2.1</td>
<td>86.3</td>
</tr>
<tr>
<td>차세대원자력</td>
<td>100.0</td>
<td>0.0</td>
<td>83.0</td>
<td>5.0</td>
<td>83.0</td>
</tr>
<tr>
<td>첨단바이오</td>
<td>100.0</td>
<td>0.0</td>
<td>78.1</td>
<td>3.1</td>
<td>78.1</td>
</tr>
<tr>
<td>우주항공·해양(10)</td>
<td>100.0</td>
<td>0.0</td>
<td>55.0</td>
<td>11.8</td>
<td>79.2</td>
</tr>
<tr>
<td>수소</td>
<td>100.0</td>
<td>0.0</td>
<td>78.6</td>
<td>3.3</td>
<td>72.7</td>
</tr>
<tr>
<td>사이버보안</td>
<td>100.0</td>
<td>0.0</td>
<td>84.3</td>
<td>2.3</td>
<td>88.8</td>
</tr>
<tr>
<td>인공지능</td>
<td>100.0</td>
<td>0.0</td>
<td>78.8</td>
<td>2.2</td>
<td>90.9</td>
</tr>
<tr>
<td>차세대통신</td>
<td>100.0</td>
<td>0.0</td>
<td>86.0</td>
<td>1.4</td>
<td>93.5</td>
</tr>
<tr>
<td>첨단로봇·제조</td>
<td>100.0</td>
<td>0.0</td>
<td>82.0</td>
<td>2.3</td>
<td>82.9</td>
</tr>
<tr>
<td>양자</td>
<td>100.0</td>
<td>0.0</td>
<td>65.8</td>
<td>4.2</td>
<td>91.9</td>
</tr>
</tbody>
</table>

9) 기술격차는 선도국을 추적하는 데 소요되는 시간으로 국가별 추적된 연구역량 등에 따라 기술수준과 다르게 나타날 수 있음
10) '22년도부터 대형 다단연소 사이클론, 달착륙·표면 탐사 등 미래·도전적인 기술로 대폭 변경되어 이전 평가와 단순 비교가 불가함
전체대상기술(136개) 중 국가전략기술(50개) 세부 정량분석

(분석결과) 한국은 국가전략기술도 논문·특허 증가율이 2위 수준으로 활발한 연구활동을 보이고 있으며, 특허의 질적 수준도 대부분 3위권
- 특허는 양적으로는 중국, 질적으로는 미국의 우위가 두드러짐
- EU는 논문에 비해 상대적으로 특허가 적으며, 일본은 해외출원도, 청구항수 등을 제외하면 전반적으로 한국보다 약간으로 나타남

〈국가전략기술 관련 논문·특허 지표 분석 결과〉

<table>
<thead>
<tr>
<th>논문</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문점유율(%)</td>
<td>논문증가율(%)</td>
</tr>
<tr>
<td>미국</td>
<td>3위 20.4</td>
<td>4위 376.1</td>
</tr>
<tr>
<td>한국</td>
<td>5위 6.6</td>
<td>2위 524.1</td>
</tr>
<tr>
<td>중국</td>
<td>1위 34.5</td>
<td>1위 876.0</td>
</tr>
<tr>
<td>일본</td>
<td>4위 7.5</td>
<td>5위 298.4</td>
</tr>
<tr>
<td>EU</td>
<td>2위 31.0</td>
<td>3위 436.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허점유율 (%)</td>
<td>특허증가율 (%)</td>
</tr>
<tr>
<td>미국</td>
<td>2위 17.2</td>
<td>3위 1052.4</td>
</tr>
<tr>
<td>한국</td>
<td>3위 15.5</td>
<td>2위 3937.2</td>
</tr>
<tr>
<td>중국</td>
<td>1위 46.6</td>
<td>1위 5158.1</td>
</tr>
<tr>
<td>일본</td>
<td>4위 11.9</td>
<td>4위 986.5</td>
</tr>
<tr>
<td>EU</td>
<td>5위 8.8</td>
<td>5위 538.7</td>
</tr>
</tbody>
</table>

1) 논문 발행건수가 많은 발표기관들을 제외한 참여도를 기반으로 연구인력 경쟁력과 다양성 측정
2) 개별 연구자의 연구 양적과 성취, 학계에 미치는 영향력(논문 안용 횟수 등)을 자연수로 표현
3) 주요 4개(한국, 중국, 일본, EU) 미국 중 4곳에 동시 출원한 특허의 비율을 기반으로 시장력을 측정
4) 발명의 수(청구량)를 기반으로 국가별 연구주제별 질적 경쟁력 측정
5 시사점

✔ (기술전략) 초격차 유지 및 미래 생존 필수기술 확보를 위하여 기술별 강·약점, 분야별 정책수요를 파악하여 기술전략(도전·혁신) 수립이 필요
- 특히, 우주항공·해양 분야는 본격·독자적인 심유주 탐사를 위한 출발 단계로 중장기적 관점의 개발
 계획 지속 및 국제연구개발 참여 강화

▶ 연구성과 활용 계획

✔ 분야·기술별 정책 사업을 주관하는 부처에서 평가 결과를 참고하여 정책·사업계획 추진 및 개선방안 마련

✔ 정부R&D 투자전략 수립 등 정부연구개발 투자방향 설정을 위한 기초자료로 활용

✔ R&D 기술성평가 및 예비타당성조사 등 기술적 타당성 검토 및 기술개발 성공가능성 분석 등을 위한
 참고자료로 활용
CONTENTS

제1장 기술수준평가 개요 ... 1

제2장 주요 결과 ... 15

제3장 전체대상기술 11대 분야별 평가 결과 41
1. 건설·교통 .. 43
2. 재난안전 ... 48
3. 우주·항공·해양 .. 52
4. 국방 .. 56
5. 기계·제조 .. 60
6. 소재·나노 .. 65
7. 농림수산·식품 ... 69
8. 생명·보건의료 .. 73
9. 에너지·자원 ... 78
10. 환경·기상 ... 83
11. ICT·SW .. 88

제4장 국가전략기술 12대 분야별 세부평가 결과 95
1. 반도체·디스플레이 ... 97
2. 이차전지 .. 108
3. 첨단모빌리티 ... 115
4. 차세대원자력 .. 121
5. 첨단바이오 ... 127
6. 우주항공·해양 .. 134
7. 수소 .. 141
8. 사이버보안 ... 148
CONTENTS

2022 기술수준평가

9. 인공지능 ... 155
10. 차세대통신 ... 162
11. 첨단로봇·제조 ... 171
12. 양자 .. 179

별첨

[별첨 1] 2022 기술수준평가(136개 전체대상기술) 결과 요약 189
[별첨 2] 2022 기술수준평가(50개 국가전략기술) 결과 요약 194
[별첨 3] 2022 기술수준평가 운영위원회 위원 명단 ... 196
[별첨 4] 2024 기술수준평가 정량분석 개선 연구 결과(안) 197
[별첨 5] 2024 기술수준평가 정성평가 개선 연구 결과(안) 246

부록

※ () 안은 해당 분야에 포함된 전략기술

건설·교통(첨단모빌리티)
재난안전
우주·항공·해양(우주항공·해양)
국방
기계·제조(첨단로봇·제조)
소재·나노
농림수산·식품
생명·보건의료(첨단바이오)
에너지·자원(이차전지, 수소, 차세대 원자력)
환경·기상
ICT·SW(인공지능, 차세대통신, 사이버 보안, 반도체·디스플레이, 양자)
제 1 장
기술수준평가 개요
제1장 기술수준평가 개요

1 평가 개요

국가적으로 중요한 핵심기술에 대해 2년마다 기술수준평가 실시

(추진배경) 과학기술기본법에 따라 국가적으로 중요한 핵심기술의 기술수준을 진단하고 과학기술 정책 수립에 필요한 기초자료 제공을 위해 매 2년 주기로 기술수준평가(22.10)를 실시
* 법적 근거 : 과학기술기본법 제14조 및 과학기술기본법 시행령 제24조

(대상기술) 국가 핵심이익 확보를 위해 과학기술·공급망·통상·외교·안보 관계를 통합적으로 고려하여 수립된 「국가전략기술 육성방안(22.10)」의 12대 국가전략기술 50개 세부중점기술을 포함하여 평가

민관협업 방향 모색을 위해 기술특성·성숙도에 따라 3개 유형으로 구분

- 혁신선도: 전후방 파급효과 큰 국가정책·산업 베타목 기술군
- 미래보상: 급격한 성장 및 국가안보 관계 핵심이익 좌우 기술군
- 필요기반: 폐디아입 전환에 따른 소기술·산업의 공동 핵심·필수기술 기술군

민관협업 시장 스케일업 및 대책물화 점검기술 확보

미래모전

주요기술

- 공공시스템
- 클라우드
- 블록체인
- 인공지능
- 첨단로봇·제조
- 사이버 보안
- 클라우드
- 블록체인
- 인공지능
- 첨단로봇·제조
- 사이버 보안

공공주도 혁신원천기술 고도화, 그를 전략분야 융합·활용에 민관 역량결집
■ 국가전력기술(제5차 과학기술기본계획), 미래혁신기술(제6회 과학기술예측조사) 등을 반영하여 기술패권경쟁 및 미래 불확실성에 대한 전략적 대응에 기여하고, 기존 대상인 중점과학기술과의 연속성 고려

✔ (국가전력기술) 공급망·통상, 국가안보, 신산업 등 통합적 관점에서 우리나라가 반드시 주도권을 확보해야할 기술
 - 전략적 중요성, 경쟁력 확보 가능성, 정부지원의 시급성 등을 기준으로 산업·연구현장의 전문가 평가와 관계부처간 정책적 협의·조정을 거쳐 12개 분야 50개 기술로 구성

✔ (미래혁신기술) 향후 25년 내(~2045년) 출현할 것으로 예상되는 기술 중 사회·경제적 영향력이 높고 파급효과가 클 것으로 예상되는 미래기술
 - 제6회 과학기술예측조사(‘20~‘21) 과정에서 기술 중심의 6개 분과 미래기술위원회를 구성하여 주요 이슈에 대응하는 607개의 미래기술 후보안(안)을 마련 ⇒ 충괄위원회에서 241개 기술을 선정 ⇒ 전문가 설문·논의를 거쳐 15개 미래혁신기술 도출

✔ (중점과학기술) 경제성장 기여, 일자리 창출, 삶의 질 향상 등 경제·사회적 가치가 높아 국가차원의 중점 투자 및 육성이 필요한 기술
 - 제4차 과학기술기본계획 수립시 최신 트렌드를 반영하여 선정 ‘08년 이후 기술수준평가는 과학기술 기본계획에 명시된 중점 기술을 평가

< 기술수준평가 평가대상기술(2008~2020) >

<table>
<thead>
<tr>
<th>연도</th>
<th>08</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>대상 기술</td>
<td>2차 과학기술기본계획</td>
<td>3차 과학기술기본계획</td>
<td>4차 과학기술기본계획</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90개 중점과학기술</td>
<td>120개 국가전력기술</td>
<td>120개 중점과학기술</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 과학기술기본법 제정(‘01년)을 통해 기술수준평가의 추진근거를 마련하고, 실시주기를 2년으로 정해왔다(‘10년)

■ 기존 120개 중점과학기술을 중심으로 50개 국가전력기술과 15개 미래혁신기술을 반영하여 11개 분야 136개 기술을 대상기술 선정

< 국가전력기술의 기술수준평가 반영 >

<table>
<thead>
<tr>
<th>[반영] 국가전력기술(50개)</th>
<th>[기존] 중점과학기술(120개)</th>
</tr>
</thead>
<tbody>
<tr>
<td>수준평가의 전략성 제고</td>
<td>수준평가 연속성 확보</td>
</tr>
</tbody>
</table>

⇒ 평가 대상기술(안) (136개) 도출

- 대상기술(안)(136개)에 미래혁신기술(15개) 연계·반영 확인
<table>
<thead>
<tr>
<th>연도</th>
<th>평가대상</th>
<th>평가방법</th>
<th>평가내용</th>
</tr>
</thead>
</table>
| 1999 | 과학기술 전 분야 (7대 분류, 32개 중분류, 170개 소분류) | 전문가 멤버 조사 | 기술수준(%) 및 기술격차(년)
발전단계(개발, 도입, 성장, 성숙, 쇠퇴)
해외/국내 최고기술 보유기관 등 |
| 2003 | 국가기술지도 (99개 핵심기술, 488개 기술영역) | 전문가 멤버조사 | 기술수준(%) 및 기술격차(년)
전문인력 및 인프라 보유 정도, 시급히 개발할 기술 및 기술성장
해외/국내 최고기술 보유기관 등
※ (구가분석) 인터뷰 조사
세계적 연구개발 방향, 미국, 일본, 유럽, 한국의 장단점, 중국과 러시아 동향 및 향후 전망 |
| 2005 | 미래 국가 육망기술 (21개 분야) | 전문가 멤버조사 | ’05년/’10년 주요국(한, 미, 영, 코, EU) 기술수준(%) 및 격차(년)
최고국의 높은 기술수준 원인 등
※ (구가분석) 기술동향조사
세계적 연구동향, 주요국 및 후발경쟁국 동향 및 특징 등 |
| 2008 | 제2차 과학기술기본계획 (90개 중점기술) | 전문가 멤버조사 | ’08년/’13년 주요국(한, 미, 영, 코, EU) 기술수준(%) 및 기술격차(년)
연구단계, 기술 발전속도, 실험기기, 응용차 전문도 등
※ (구가분석) 인터뷰 조사, 기술동향조사 및 논문 특허 분석
성장곡선 모형 선택, 최고국의 높은 기술수준 원인, 가속발전 등
기술의 중요성, 선진국·경쟁국·국내 산업 및 기술개발 동향, 기술개발 전략, 특허효과 등 |
| 2010 | 제2차 과학기술기본계획 및 융합기술 (90개 중점기술, 5개 중점융합기술) | 전문가 멤버조사 | ’10년/’15년 주요국(한, 미, 영, 코, EU) 기술수준(%) 및 기술격차(년)
연구단계, 기술 발전속도, 실험기기 등
※ (구가분석) 논문·특허 분석
연도별/국가별 논문·특허 정규용 및 영향력 |
| 2012 | 제3차 과학기술기본계획 (120개 국가전략기술) | 전문가 멤버조사 | 주요국(한, 미, 영, 코, EU)의 기술수준(%) 및 기술격차(년)
항후 정부/민간 및 기초/융합개발 투자방향, 연구주체, 정부정책 등 |
| 2014 | 제3차 과학기술기본계획 (120개 국가전략기술) | 전문가 멤버조사 | 주요국(한, 미, 영, 코, EU)의 기술수준(%) 및 기술격차(년)
항후 정부/민간 및 기초/융합개발 투자방향, 연구주체, 정부정책 등 |
| 2016 | 제4차 과학기술기본계획 (120개 중점기술) | 전문가 멤버조사 | 주요국(한, 미, 영, 코, EU)의 기술수준(%) 및 기술격차(년)
국가별 연구개발활동경향, 연구단계별역량, 강점분야 및 기타 동향, 정책별 시급도 및 제언 |
| 2018 | 제4차 과학기술기본계획 (120개 중점기술) | 전문가 멤버조사 | 주요국(한, 미, 영, 코, EU)의 기술수준(%) 및 기술격차(년)
국가별 연구개발활동경향, 연구단계별역량, 강점분야 및 기타 동향, 정책별 시급도 및 제언 |
| 2020 | 제4차 과학기술기본계획 (120개 중점기술) | 전문가 멤버조사 | 주요국(한, 미, 영, 코, EU)의 기술수준(%) 및 기술격차(년)
국가별 연구개발활동경향, 연구단계별역량, 강점분야 및 기타 동향, 정책별 시급도 및 제언 |

※ (구가분석) 논문·특허 분석
특허 분석범위를 5개국(한, 미, 영, 코, EU) 특허청 출원 특허 대상
주요논문, 주요특허비용을 추가하여 결과평가 보완
2. 평가 방법

정성평가(웹파이조사)와 정량분석(논문·특허 분석)을 통해 결과 도출

1. 정성평가
 평가전문가(1,360명) 대상 2Round 온라인 다피아 조사*를 통해 기술별 기술수준(%) 및 기술격차(%) 등을 분석
 * 전문가의 경험적 지식을 바탕으로 반복된 설문과 피드백을 통하여 정량적 수치로 예측하고, 문제 해결에 필요한 결과를 도출하는 방법

 < 1차·2차 다피아 조사 항목 >

<table>
<thead>
<tr>
<th>구분</th>
<th>항목</th>
<th>내용</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술수준</td>
<td>최고기술 보유국</td>
<td>• 주요국 포함 전체 국가들 대상으로 최고기술 보유국을 조사</td>
<td>판단근거 서술</td>
</tr>
<tr>
<td></td>
<td>주요국의 기술수준</td>
<td>• 한국, 중국, 일본, EU, 미국에 대해 최고기술 보유국 대비 기술수준(%) 및 기술격차(%) 조사*
 * 기술수준 및 격차 판단 근거 포함</td>
<td>판단근거 서술</td>
</tr>
<tr>
<td>1차 기술등향</td>
<td>주요국의 기술수준 그룹</td>
<td>• 한국, 중국, 일본, EU, 미국이 속한 기술수준그룹을 조사
 ※ 선도: 기술분야를 선도하고 있는 그룹, 추격: 선진기술의 모방가능이 가능한 그룹, 후발: 선진기술의 도입가능이 가능한 그룹, 낙후: 연구개발 능력이 취약한 그룹</td>
<td></td>
</tr>
<tr>
<td>기술등향</td>
<td>주요국의 연구개발 활동 경향</td>
<td>• 한국, 중국, 일본, EU, 미국의 최근 5년간 연구개발 활동 경향
 * 국가 내의 관심과 지원 및 연구 활동 추세를 바탕으로 판단</td>
<td></td>
</tr>
<tr>
<td></td>
<td>주요국의 연구단계별 역량</td>
<td>• 한국, 중국, 일본, EU, 미국의 연구 역량을 기초와 응용개발 단계로 나누어 조사</td>
<td></td>
</tr>
<tr>
<td></td>
<td>주요국의 강점 분야 및 기타 동향</td>
<td>• 1차 결과(최고기술보유국, 주요국의 기술수준, 주요국의 기술 수준그룹) 검토 후, 응답 수정
 * 국내 기술수준 변화 주요 원인</td>
<td>서술형</td>
</tr>
<tr>
<td>2차 정책재언</td>
<td>기술수준</td>
<td>• 1차 결과(최고기술보유국, 주요국의 기술수준, 주요국의 기술 수준그룹) 검토 후, 응답 수정
 * 국내 기술수준 변화 주요 원인</td>
<td>변화 주요 원인 서술</td>
</tr>
<tr>
<td>정책재언</td>
<td>정책별 시급도 및 제언</td>
<td>• 향후 5년간 정부 정책추진 정책별 시급도 및 제언을 조사
 * 국내현황 총괄, 국제협력 총괄, 인력양성 및 유치, 인프라 구축, 법·제도 개선, 연구비 획득</td>
<td>정책 재언 서술</td>
</tr>
</tbody>
</table>

2. 정량분석
 논문·특허의 활동력, 기술력 등 파악할 수 있는 지표를 활용
 - (데이터) 국제적 비교·분석이 가능한 최근 10~12년간 논문·특허 중 국가전략기술과 연관된 데이터를 수집하여 분석을 수행

 < 정량분석 대상 데이터 >

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
<td>한국, 중국, 일본, EU(영국 포함 28개국), 미국</td>
<td>한국, 중국, 일본, EU(영국 포함 28개국), 미국</td>
</tr>
<tr>
<td>데이터</td>
<td>SCOPUS 등재 논문</td>
<td>공개, 공고/등록 특허</td>
</tr>
<tr>
<td>기간</td>
<td>공개일 기준 최근 12년 (2010.01~2021.12)</td>
<td>출원일 기준 최근 10년 (2011.01~2020.12)</td>
</tr>
<tr>
<td>유효 건수</td>
<td>556,493 건</td>
<td>1,517,535 건</td>
</tr>
</tbody>
</table>
분석 지표

- **활동력 분석** 논문·특허 점유율 및 증가율, 특허 해외출원도 등의 지표를 통해 주요국의 논문·특허 활동 추이를 분석
- **기술력 분석** 논문·특허 영향력, 중요 논문·특허 비율, IP4 점유율, 특허 청구수수 등 지표를 통해 논문·특허가 가지고 있는 기술적 가치를 분석
 * 패밀리 특허와 달리 IP4 점유율은 주요국 시장에서의 영향력 분석 가능
- **포트폴리오 분석** 점중도 지수(Activity Index)와 영향력 지수(Atractivity Index) 기반으로 특정 국가 내에서 해당 기술의 기술적 역량과 연구 활동 상황을 파악
 * 점중도에 뒤처지더라도 특정 국가가 다른 국가와 비교하여 상대적으로 해당 기술에 얼마나 집중하고 기술적 역량을 확보하고 있는지 분석이 가능

논문·특허 분석 지표

<table>
<thead>
<tr>
<th>구분</th>
<th>지표</th>
<th>의미</th>
<th>지표 정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>활동력 분석 지표</td>
<td>논문 점유율</td>
<td>논문 건수를 기반으로 논문의 양적 경쟁력 측정</td>
<td>특정기술에서 특정국가의 논문건수/ 특정기술의 전체 논문건수</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>논문 건수를 기반으로 논문의 양적 경쟁력 추이를 측정</td>
<td>특정기술에서 특정국가의 (최근구간논문건수 - 과거구간논문건수)/ 특정기술에서 특정국가의 과거구간 논문건수</td>
<td></td>
</tr>
<tr>
<td>특허 점유율</td>
<td>특허 증가율</td>
<td>출원 특허 건수를 기반으로 특허의 양적 경쟁력 추이를 측정</td>
<td>특정기술에서 특정국가의 특허건수/ 특정기술의 전체 특허건수</td>
</tr>
<tr>
<td>해외 출원도</td>
<td>해외 출원도</td>
<td>패밀리 특허 국가수를 기반으로 특허자체가 가진 양적 영향력(경제적 가치) 측정</td>
<td>특정기술에서 특정국가의 패밀리특허 국가수/ 특정기술에서 특정국가의 전체 출원건수</td>
</tr>
<tr>
<td>기술력 분석 지표</td>
<td>논문 영향력</td>
<td>논문 건당 피인용건수를 기반으로 논문의 질적 경쟁력 측정</td>
<td>특징기술에서 특정국가의 전체 논문의 인용된 횟수의 총합/ 특징기술에서 특정국가의 전체 논문 건수</td>
</tr>
<tr>
<td>중요 논문 비율</td>
<td>국가별 중요논문 확보율을 기반으로 논문의 질적 경쟁력 측정</td>
<td>특정기술의 특정국가의 중요논문 건수/ 특정기술의 전체 중요논문 건수</td>
<td></td>
</tr>
<tr>
<td>연구 주제 다양도</td>
<td>논문 발행건수와 많은 발표기관들을 제외한 참여도를 기반으로 연구주제 경쟁력과 다양성 측정</td>
<td>특정기술에서 특정국가의 1 - 논문 발행기관 TOP5가 참여한 논문 건수/ 특정기술에서 특정국가의 전체 논문 건수</td>
<td></td>
</tr>
<tr>
<td>H-index (추가)</td>
<td>H-지수</td>
<td>개별 연구자의 연구업적과 성취, 학계에 미치는 영향력을 자연수로 표현(논문)</td>
<td>H-지수 = (\text{max} \min (f(i), i), f(i))는 1번째 논문의 인용횟수</td>
</tr>
<tr>
<td>특허 영향력</td>
<td>등록특허 건당 피인용건수를 기반으로 특허의 질적 경쟁력 측정</td>
<td>특정기술에서 특정국가의 미국 등록특허의 인용된 횟수의 총합/ 특정기술에서 특정국가의 전체 미국 등록특허 건수</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>표</td>
<td>의미</td>
<td>표 표정</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 중요 특허 비율 | | • 국가별 중요특허 확보율을 기반으로 특허의 질적 경쟁력 측정
 * 공개·등록특허 중 IP4 특허에 해당하거나 등록특허 중에서 패밀리가수 혹은 참가
 합수가 해당기술의 평균보다 높은 특허 | 특정기술에서 특정국가의 중요특허 건수 |
| | | • 주요국(한국, 중국, 일본, EU, 미국)에 동시 출원한 특허의 비율을 기반으로 시장력을 측정
 * IP4 : 한국, 미국, 일본, EU, 중국 중 4개국 출원 | 특정기술에서 특정국가의 IP4 동시 특허출원 건수 |
| 청구 항수 | | • 발명의 수(청구항)를 기반으로 국가별·연구 주제별 질적 경쟁력 측정 | 특정기술에서 특정국가 등록특허의 청구항수 |
| 포트폴리오 분석 지표 | | | | 특정기술에서 특정국가의 등록 건수 |
| 접촉도 지수 (A.I) | | • 특정 국가 내의 50개 국가전략기술 중 해당 국가전략기술의 상대적 논문·특허 접촉도
 ※ 1보다 큰 경우 상대적 접촉도가 높고 1보다 낮은 경우 상대적 접촉도가 낮은 것을 의미 | 특정기술에서 특정국가(출원인)의 특허(논문)건수 |
| | | • 전체 기술 분야의 특청국가(출원인)의 특허(논문)건수 | |
| 영향력 지수 (A.A.I) | | • 특정 국가 내의 50개 국가전략기술 중 해당 국가전략기술의 상대적 논문·특허 영향력
 ※ 1보다 큰 경우 상대적 영향력이 높고 1보다 작은 경우 상대적 영향력이 낮은 것을 의미 | 특정기술에서 특정국가(출원인)의 특허(논문)피왕용비 |
| | | • 전체 기술 분야의 특정국가(출원인)의 특허(논문)피왕용비 | |

※ '22년 기술수준평가 시 신규 추가 표시

- (결과활용) 논문·특허 정량분석을 사전 실시하고, 이 결과를 정성평가 전문가들에게 제공하여 정성
 평가의 객관성 제고에 활용

■ 분석 절차

☑ (분석 방법) 기술별 핵심키워드를 반영한 검색식으로 DB 추출 후 필터링, 변리사 검토 등을 거쳐 지표별
 분석을 위한 유호 DB 구축

〈 정량분석 수행 절차 〉

특허/논문 검색식 작성
• 기술별 핵심 키워드를 기반으로 검색식 작성

유호 DB 구축 및 정비 * 변리사 검토
• 지표분석에 필요한 논문, 특허 필터링, DB 구축, 데이터 가공

지표별 분석
• 가공된 데이터로 대상기술별 분석

☑ (대상) 한국, 미국, 일본, 유럽 및 중국 공개/등록 특허와 논문을 분석 대상으로 유호 특허 및 논문을 분석

- 논문 : 공개일 기준 최근 12년(‘10.01~’21.12.)간 SCOPUS에 등재된 논문
- 특허 : 출원일 기준 최근 10년(‘11.01~’20.12.)간 공개, 공고, 등록된 특허
 ※ 특허의 경우 미공개 상태의 데이터가 존재하는 ‘20년 이후의 자료는 유호하지 않으므로 ’20년 자료까지만 분석
✔ (검색식 작성) 대상 기술별 기술 정의 및 요소 기술 등을 바탕으로 도출된 IPC(국제특허분류코드) 및 핵심 키워드, 확장 키워드를 활용하여 검색식을 작성하여 유호 데이터 확보

✔ IPC’(CPC**) 키워드 연계검색식 활용시 유호특허에 대한 신뢰도 향상 및 검색 시간 단축 등 효율적 활용 가능

* International Patent Classification, ** Cooperative Patent Classification

〈 IPC-키워드 연계 검색식 작성 4가지 유형 〉

<table>
<thead>
<tr>
<th>유형</th>
<th>검색식 작성 형태</th>
<th>작성 방안</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 1. 기술이 IPC와 완벽하게 매칭되어 IPC로만 검색식 작성</td>
<td>(IPC or CPC) and 검색기간</td>
<td>필터링 없이 유호특허로 선정</td>
</tr>
<tr>
<td>CASE 2. 기술이 IPC와 매우 유사하게 매칭되어 핵심키워드와 연계하여 검색식 작성</td>
<td>(IPC) and 핵심키워드 and 검색기간</td>
<td>필터링 진행 후 유호특허 선정</td>
</tr>
<tr>
<td>CASE 3. 기술이 IPC와 부문적으로 매칭되어 핵심키워드 및 관련키워드와 연계하여 검색식 작성</td>
<td>(IPC) and (핵심키워드+관련키워드) and 검색기간</td>
<td></td>
</tr>
<tr>
<td>CASE 4. 기술이 IPC와 매칭되지 않아 키워드로만 검색식 작성</td>
<td>(키워드) and (키워드) and 검색기간</td>
<td></td>
</tr>
</tbody>
</table>

〈 IPC-키워드 연계 유형별 사례 〉

<table>
<thead>
<tr>
<th>유형</th>
<th>기술명</th>
<th>관련 IPC</th>
<th>검색식</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 1. 항공우주 - 항공기반 - 기체 - 동체</td>
<td>B64C-001 동체</td>
<td>MIPC:(B64C-001) AND AD:(·)≥20010101</td>
<td></td>
</tr>
<tr>
<td>CASE 2. 항공우주 - 항공기반 - 기체 - 엔진마운트</td>
<td>B64D-027/26 동력 장치의 장착구조에 특징이 있는 항공기</td>
<td>MIPC:(B64D-027/26) AND AB:(엔진* 터빈* 모터* ENGINE* TURBINE* MOTOR*) AND AD:(·)≥20010101</td>
<td></td>
</tr>
<tr>
<td>CASE 3. 제조기반 - 스마트 장비-시스템 - ICT융합 스마트 가공시스템 - 고효율 가공시스템</td>
<td>B23 공작 기계</td>
<td>MIPC:(B23*) AND KEY:(정밀도* 정확도* 자유도* 고효율* 고강성* 내구성* "확적 경로"* PRECISION* ACCURACY* FREEDOM* "HIGH EFFICIENCY"* HIGH-EFFICIENCY* "HIGH STIFFNESS"* HIGH-STIFFNESS* DURABILITY* "TOOL PATH"* "CAD" "CAM" (에너지* 전력* 전원* ENERGY* POWER*) N/1 (모니터링* 감시* 측정* 최적화* 소비* MONITORING* DETECT* OPTIMIZ* CONSUMPTION*) AND AD:(·)≥20010101</td>
<td></td>
</tr>
<tr>
<td>CASE 4. 제조기반 - 소성가공 - 특수성형기술평가 - 소재간 복합기술</td>
<td>없음</td>
<td>KEY:(복합재* "복합 소재* "복합 재료*" (COMPOSITE A/1 MATERIAL*)) AND KEY:(고속* 초고속* 오도클레이브* 프리프레그* "HIGH SPEED"* HIGH-SPEED* AUTOCLAVE* PREPREG*) N/1 (성형* 포장* 포모양* FORMING*) AND AD:(·)≥20010101</td>
<td></td>
</tr>
</tbody>
</table>
유효DB 구축
(유효DB 구축) 검색식 작성의 오류 등을 방지하기 위해, 다양한 요인을 반영하여 유효특허를 선별하는 필터링* 작업을 실시하고, 별도로 변리사의 검토를 거쳐 유효DB를 구축
* 핵심키워드군의 동일 필드 존재 여부, 키워드 횟수, 키워드 간의 거리, 관련 IPC 포함 여부, 관련 출원인, 필수/제외 키워드 포함 여부 등
** 기술 정의 등을 통해 IPC가 도출된 기술은 핵심 키워드, 확장 키워드와 연계하여 검색식을 작성함으로써 필터링 작업을 생략

〈 DB 구축 결과물 〉

<table>
<thead>
<tr>
<th>구분</th>
<th>20</th>
<th>22</th>
<th>증감율</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문(건)</td>
<td>740,500</td>
<td>556,493</td>
<td>△33.1%</td>
</tr>
<tr>
<td>특허(건)</td>
<td>1,347,934</td>
<td>1,520,328</td>
<td>11.3%</td>
</tr>
</tbody>
</table>

(지표별 분석) 136개 평가 대상기술 관련 유효 데이터를 확보하고 지표에 대해 분석 실시
(분석지표) 기술수준평가 개선 연구(‘21년) 결과를 반영하여 질적 지표인 H-Index 추가 반영*
* H-Index 2005년 미국 물리학자인 Jorge E. Hirsch가 제안한 지표로, 특정 연구자가 발표한 논문과 논문별 피인용횟수를 이용하여, 연구의 양과 질을 동시에 고려할 수 있는 지표(논문을 많이 내고 연구자가 과도하게 높게 평가되는 것을 방지)

지표 선정 및 분석 결과 사각화 등은 KISTEP이 제안·결정하고 검색식 작성, 노이즈 제거 등 분석업무는 전문기관에 위탁하여 수행
* 용역기관 사안특허법률사무소에서 유호 데이터 확보에서부터 활동력·기술력, 포트폴리오 분석을 담당
평가대상기술, 분야(대분류), 국가 차원의 기술수준 및 격차 계산

✔ (평가대상기술) 극단적인 값에 의한 영향을 줄이기 위해 중앙값(median)을 해당 대상기술의 수준으로 선택
 - 각 대상기술별 최고기술 보유국의 기술수준은 100%로, 최고기술 보유국의 기술격차는 0.0년으로 표준화

✔ (분야 및 국가) 모든 대상기술의 수준 데이터가 분포한 중심의 위치를 찾기 위해 산술평균으로 계산
 - 대분류별 및 전체 기술수준은 평균 후 최고기술 보유국의 기술수준은 100%로 최고기술 보유국의 기술격차는 0.0년으로 표준화

< 대상기술, 분야, 국가 차원의 기술 수준 및 격차 계산 방법 >
평가 추진 체계

국가전략기술(’22.10) 반영하여 정량분석 및 정성평가(’23.2-7) 실시

평가 추진 일정

<table>
<thead>
<tr>
<th>구분</th>
<th>수행주제 및 내용</th>
<th>추진일정</th>
</tr>
</thead>
<tbody>
<tr>
<td>추진계획 수립</td>
<td>「제5차 과학기술기본계획」과 연계하여 기술수준 평가대상 기술 선정 및 범위 분석 등 ※ 12대 국가전략기술 육성방안(’23.10.28.)도 연계</td>
<td>‘’22.10</td>
</tr>
<tr>
<td>델피 조사 준비</td>
<td>• 기술별 논문·특허 분석조사 시스템 구축 • 평가전문가단 구성</td>
<td>‘’22.11~23.1</td>
</tr>
<tr>
<td>1차 델피 조사</td>
<td>• 1차 전문가 델피 조사</td>
<td>‘’23.2~3</td>
</tr>
<tr>
<td>2차 델피 조사</td>
<td>• 2차 전문가 델피 조사 ※ 최종 응답자: 1,360명 중 1,190명(87.5%)</td>
<td>‘’23.5~7</td>
</tr>
<tr>
<td>Focus Group Discussion</td>
<td>• 전략기술 12대 분야별 전문가 그룹 자문을 통하여 평가 결과 분석 및 검토</td>
<td>‘’23.8~11</td>
</tr>
<tr>
<td>안건 보고</td>
<td>• 국가과학기술자문회의 안건 보고</td>
<td>‘’24.2</td>
</tr>
</tbody>
</table>

1,360명의 평가전문가단을 중심으로 기술수준평가 수행

운영위원회, 1,360명의 평가전문가단을 중심으로 수준평가 수행

<table>
<thead>
<tr>
<th>운영위원회(14명) (추진계획·평가결과 검토 및 자문)</th>
<th>한국과학기술기획평가원(KISTEP) (실무운영 총괄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>평가전문가단(1,360명) (델피조사 참여, 논문·특허 분석결과 검토)</td>
<td></td>
</tr>
</tbody>
</table>

1. **운영위원회** 추진계획, 기술수준평가 결과 검토 및 자문
 ※ 민간 위원장 및 기술분야별 전문가 등 14명으로 구성

2. **평가전문가단** 정량분석(논문·특허분석)결과 검토, 정성평가(델피조사) 수행
 - **선정기준** 국가전략기술 및 제6회 과학기술예측조사의 미래혁신기술 도출에 참여한 전문가, 2회(‘18, ’20년)에 걸쳐 기술수준평가에 참여한 전문가를 대상으로 한 추천을 통해 전문성을 확보
 ※ 신규 전문가의 경우 부처, 기관, 전문가의 추천 빈도, 추천된 연구자의 연구성과(IRIS, NTIS) 등을 활용하여 교차 검증
< 평가전문가단 선정 절차 >

1. R&D 부처 추천, 기관 추천
2. 전문가 상호추천
 * 기존 전문가단, 전략기술 전문가, 미래기술전문가 대상 설문조사
3. NTIS 연구자정보 검증
 * 연구분야, 연구성과 등
4. 최종 선정

☑ (조사참여) 평가전문가(1,360명) 중 2차 면접조사까지 1,190명이 참여(87.5%)

< 평가전문가단 구성 >

<table>
<thead>
<tr>
<th>11대 분야</th>
<th>산</th>
<th>학</th>
<th>연</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설·교통</td>
<td>34</td>
<td>28.3%</td>
<td>48</td>
<td>40.0%</td>
</tr>
<tr>
<td>재난안전</td>
<td>8</td>
<td>20.5%</td>
<td>14</td>
<td>35.9%</td>
</tr>
<tr>
<td>우주·항공·해양</td>
<td>14</td>
<td>18.7%</td>
<td>24</td>
<td>32.0%</td>
</tr>
<tr>
<td>국방</td>
<td>5</td>
<td>18.5%</td>
<td>2</td>
<td>7.4%</td>
</tr>
<tr>
<td>기계·제조</td>
<td>27</td>
<td>23.1%</td>
<td>37</td>
<td>31.6%</td>
</tr>
<tr>
<td>소재·나노</td>
<td>3</td>
<td>6.4%</td>
<td>14</td>
<td>29.8%</td>
</tr>
<tr>
<td>농림수산·식품</td>
<td>8</td>
<td>10.3%</td>
<td>43</td>
<td>55.1%</td>
</tr>
<tr>
<td>생명·보건의료</td>
<td>23</td>
<td>18.4%</td>
<td>73</td>
<td>58.4%</td>
</tr>
<tr>
<td>에너지·자원</td>
<td>22</td>
<td>11.4%</td>
<td>63</td>
<td>32.6%</td>
</tr>
<tr>
<td>환경·기상</td>
<td>13</td>
<td>13.1%</td>
<td>39</td>
<td>39.4%</td>
</tr>
<tr>
<td>ICT·SW</td>
<td>51</td>
<td>18.9%</td>
<td>98</td>
<td>36.3%</td>
</tr>
<tr>
<td>계</td>
<td>208</td>
<td>17.5%</td>
<td>455</td>
<td>38.2%</td>
</tr>
</tbody>
</table>

3. (KISTEP) 실무 운영을 총괄하며, 평가전문가단 지원 등 담당
제 2 장
주요 결과

1. 전체대상기술(136개) 수준 평가
2. 전체대상기술(136개) 중
 국가전략기술(50개) 세부 평가
3. 시사점
제2장 주요 결과

1 전체대상기술(136개) 수준 평가

- 전체대상기술(136개 국가핵심기술) 평가 결과, 미국(100.0%)이 최고기술 보유국, EU(94.7%), 일본(86.4%), 중국(82.6%), 한국(81.5%) 순으로 평가
- 최근 2년간(20~22) 한국(80.1→81.5)과 중국(80.0→82.6)의 기술수준이 상승하고, 일본(87.3→86.4)과 EU(95.6→94.7)의 기술수준은 하락세

① (총괄) 최고기술 보유국(미국) 대비 한국의 '22년 기술수준은 81.5%로, '20년(80.1%) 대비 1.4%p
향상되고, 한국의 '22년 기술격차는 3.2%으로, '20년(3.3%) 대비 0.1년 단축

〈 주요 5개국 전체대상기술 기술수준·격차 현황 〉

<table>
<thead>
<tr>
<th>구분</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>2022</td>
<td>100.0</td>
<td>0.0</td>
<td>81.5</td>
<td>3.2</td>
<td>82.6</td>
</tr>
<tr>
<td>2020</td>
<td>100.0</td>
<td>0.0</td>
<td>80.1</td>
<td>3.3</td>
<td>80.0</td>
</tr>
</tbody>
</table>

한국과 중국의 기술수준은 2012년부터 지속적인 상승*을 나타내며, 일본은 2016년도 이후부터 하락세로 나타남.
* 2012년도 이전에는 수준평가 결과 수치 도출 방식이 상이하여 추세 비교가 불가

〈 주요 5개국 기술수준·격차 변동 추이(전체대상기술) 〉

② (분야별) 한국은 '20년 대비하여 총 11개 분야 중 9개 분야'에서 기술 수준이 향상되고, 2개 분야**에서 기술 수준이 하락한 것으로 나타남

* (9개 분야 향상) ▪ 건설·교통, ▪ 재난안전, ▪ 국방, ▪ 기계·제조, ▪ 소재·나노, ▪ 농림수산·식품, ▪ 생명·보건 의료, ▪ 에너지·자원, ▪ 환경·기상
** (2개 분야 하락) ▪ 우주·항공·해양, ▪ ICT·SW
※ ’22년도 평가부터 우주·항공·해양 분야 대상기술이 대형 다단연소 사이클 잔인, 우주 관측·센싱, 달착륙·표면 탐사 등 미래·도전적인 국가전략기술로 대부분 변경되었고, ICT·SW 분야 기술도 인지컴퓨팅, 양자센싱, 효율적 학습 및 AI언프라 고도화, 전략반도체 등 국가전략기술로 대폭 추가·변경된 점의 평가 반영되어 다소 수준이 하락한 것으로 분석됨

〈 주요 5개국 전체대상기술 분야별 수준(%) 비교 〉

<table>
<thead>
<tr>
<th>분야</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설교통</td>
<td>100.0</td>
<td>0.0</td>
<td>85.3</td>
<td>2.3</td>
<td>82.8</td>
</tr>
<tr>
<td>재난안전</td>
<td>100.0</td>
<td>0.0</td>
<td>81.3</td>
<td>2.6</td>
<td>78.1</td>
</tr>
<tr>
<td>우주·항공·해양</td>
<td>100.0</td>
<td>0.0</td>
<td>61.6</td>
<td>9.8</td>
<td>79.4</td>
</tr>
<tr>
<td>국방</td>
<td>100.0</td>
<td>0.0</td>
<td>76.7</td>
<td>4.3</td>
<td>82.3</td>
</tr>
<tr>
<td>기계·제조</td>
<td>100.0</td>
<td>0.0</td>
<td>82.1</td>
<td>2.8</td>
<td>78.9</td>
</tr>
<tr>
<td>소재·나노</td>
<td>100.0</td>
<td>0.0</td>
<td>83.3</td>
<td>2.6</td>
<td>80.5</td>
</tr>
<tr>
<td>농림수산·식품</td>
<td>99.5</td>
<td>0.0</td>
<td>82.5</td>
<td>3.4</td>
<td>79.2</td>
</tr>
<tr>
<td>생명·보건의료</td>
<td>100.0</td>
<td>0.0</td>
<td>79.4</td>
<td>2.9</td>
<td>78.9</td>
</tr>
<tr>
<td>에너지·자원</td>
<td>100.0</td>
<td>0.0</td>
<td>84.5</td>
<td>3.2</td>
<td>85.2</td>
</tr>
<tr>
<td>환경·기상</td>
<td>100.0</td>
<td>0.0</td>
<td>83.9</td>
<td>3.5</td>
<td>78.6</td>
</tr>
<tr>
<td>ICT·SW</td>
<td>100.0</td>
<td>0.0</td>
<td>82.6</td>
<td>2.0</td>
<td>87.9</td>
</tr>
</tbody>
</table>

〈 주요 5개국 전체대상기술 11대 분야별 전반 수준·격차 비교 〉

- 한국은 주요 5개국 중 8개 분야에서 4위로 보이고, 3개 분야”에서 5위로 나타남(’22년 기준)
* (4위, 8개 분야) ▶ 건설·교통, ▶ 재난안전, ▶ 기계·제조, ▶ 소재·나노, ▶ 농림수산·식품, ▶ 생명·보건의료, ▶ 환경·기상, ▶ ICT·SW / ** (5위, 3개 분야) ▶ 우주·항공·해양, ▶ 국방, ▶ 에너지·자원

〈 11대 분야별 기술수준 변동 추이(%) 〉

<table>
<thead>
<tr>
<th>분야</th>
<th>①건설·교통</th>
<th>②재난안전</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>79.0</td>
<td>66.5</td>
</tr>
<tr>
<td>2014</td>
<td>79.6</td>
<td>69.7</td>
</tr>
<tr>
<td>2016</td>
<td>79.6</td>
<td>70.1</td>
</tr>
<tr>
<td>2018</td>
<td>79.0</td>
<td>76.4</td>
</tr>
<tr>
<td>2020</td>
<td>80.0</td>
<td>82.8</td>
</tr>
<tr>
<td>2022</td>
<td>82.6</td>
<td>82.6</td>
</tr>
<tr>
<td>2012</td>
<td>73.0</td>
<td>62.8</td>
</tr>
<tr>
<td>2014</td>
<td>73.0</td>
<td>65.8</td>
</tr>
<tr>
<td>2016</td>
<td>73.5</td>
<td>65.7</td>
</tr>
<tr>
<td>2018</td>
<td>75.9</td>
<td>70.0</td>
</tr>
<tr>
<td>2020</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td>2022</td>
<td>78.1</td>
<td>78.1</td>
</tr>
<tr>
<td>③우주·항공·해양 15)</td>
<td>④국방 16)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⑤기계·제조</th>
<th>⑥소재·나노 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⑦농림수산·식품 17)</th>
<th>⑧생명·보건의료 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⑨에너지·자원</th>
<th>⑩환경·기상</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15) '22년도 평가부터 대형 디지털소 사이를 업진, 날적적·편지 팀사 등 미래·진보적인 기술로 대폭 변경되어 이전 평가와 단순 비교가 불가함
16) 국방 분야 기술은 2018년도부터 평가
17) 소재·나노는 2012~2016년(4차 기반계획 시기)의 나노 분야, 농림수산·식품 분야는 바이오 분야, 생명·보건의료는 의료 분야와 비교
※ 주기적으로 평가 대상기술이 변경되기 때문에 직접적인 수준 비교는 곤란하나, 과학기술 분야의 시계열적 수준 변화 추이를 참고할 수 있도록 제시

(논문·특허분석) 최근 10~12년간 주요국 논문·특허 중 전체대상기술 연관된 데이터를 통해 논문·특허 점유율, 중요논문·특허비율, 논문·특허 영향력 등 다양한 양·질적 지표 15개를 활용하여 분석

〈정량분석 대상 데이터〉

<table>
<thead>
<tr>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
<td>한, 중, 일, EU(영국 포함 28개국), 미</td>
</tr>
<tr>
<td>데이터</td>
<td>SCOPUS 등재 논문</td>
</tr>
<tr>
<td>기간</td>
<td>공개일 기준 최근 12년’(10.1~’21.12)</td>
</tr>
<tr>
<td>유효건수</td>
<td>556,493 건</td>
</tr>
</tbody>
</table>

한국은 주요 5개국 중 논문·특허의 증가율이 중국에 이어 2위 수준으로 보이고 있으며, 논문·특허 질적 지표는 전반적으로 4위권의 해당

〈 전체대상기술 관련 논문·특허 지표 분석 결과 〉

<table>
<thead>
<tr>
<th>논문</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문점유율 (%)</td>
<td>논문증가율 (%)</td>
<td>논문영향력</td>
</tr>
<tr>
<td>미국</td>
<td>5위</td>
<td>23.9</td>
</tr>
<tr>
<td>한국</td>
<td>5위</td>
<td>5.4</td>
</tr>
<tr>
<td>중국</td>
<td>2위</td>
<td>33.8</td>
</tr>
<tr>
<td>일본</td>
<td>4위</td>
<td>6.0</td>
</tr>
<tr>
<td>EU</td>
<td>1위</td>
<td>34.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허점유율 (%)</td>
<td>특허증가율 (%)</td>
<td>해외출원도 (%)</td>
</tr>
<tr>
<td>미국</td>
<td>2위</td>
<td>13.6</td>
</tr>
<tr>
<td>한국</td>
<td>3위</td>
<td>13.4</td>
</tr>
<tr>
<td>중국</td>
<td>1위</td>
<td>55.8</td>
</tr>
<tr>
<td>일본</td>
<td>4위</td>
<td>9.9</td>
</tr>
<tr>
<td>EU</td>
<td>5위</td>
<td>7.4</td>
</tr>
</tbody>
</table>

18) 논문 발행건수가 많은 발표기관들을 제외한 참여도를 기반으로 연구인력 경쟁력과 다양성 측정
19) 개별 연구자의 연구 영역과 성취, 학계에 미치는 영향력(논문 인용 횟수 등)을 자연수로 표현
20) 주요 4개국(한국, 중국, 일본, EU) 중 4개국에 동시에 출원한 특허의 비율을 기반으로 사정력을 측정
21) 발명의 수(특허량)를 기반으로 국가별 연구주제별질적 경쟁력 측정
주요 5개국에서 관련 논문·특허 모두 양적으로는 중국이 우위에 있으나, 질적 측면에서는 논문은 EU, 특허는 미국이 우위에 있음

주요 5개국

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 접유율</td>
<td>특허 접유율</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>해당 주요 비율</td>
<td>해당 주요 비율</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>논문 포트폴리오</th>
</tr>
</thead>
<tbody>
<tr>
<td>수치 표현유의유인</td>
</tr>
<tr>
<td>순수 표현유의유인</td>
</tr>
<tr>
<td>논문 집중도 지수</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허 포트폴리오</th>
</tr>
</thead>
<tbody>
<tr>
<td>수치 표현유의유인</td>
</tr>
<tr>
<td>순수 표현유의유인</td>
</tr>
<tr>
<td>특허 집중도 지수</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 □ 일본 □ EU □ 미국. ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수

22) 국가별 비교를 위해 단위가 다른 논문, 특허 지표의 값들을 각각 최고 수준개를 100으로 하여 상대비교
23) 집중도, 영향력 각 1을 넘으면 타국 기술에 비해 상대적으로 우위(제과 sez분면에 있는 경우 양,질적으로 우수)
- (기술분야별) 한국은 건설·교통, 기계·제조, 소재·나노, 농림수산·식품, 에너지·자원, ICT·SW 분야에 일부 기술의 영향력 있는 논문성과가 있고, 에너지·자원, ICT·SW 분야는 특허에서도 점적인 성과가 나타남

〈 전체대상기술 분야별 논문·특허 집중도-영향력 비교 〉

<table>
<thead>
<tr>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
</table>

① 건설·교통

② 재난안전

③ 우주·항공·해양
24) 국방분야 기술은 2018년부터 평가
25) 소재·나노는 2012~2016년(4차 기본계획 시기)의 나노 분야, 생명·보건의료는 의료 분야, 농림수산·식품 분야는 바이오 분야와 비교
전체대상기술(136개) 중 국가전략기술(50개) 세부 평가

- 국가전략기술(50개 국가전략기술) 평가 결과, 미국(100.0%)이 최고기술 보유국, EU(92.3%), 중국(86.5%), 일본(85.2%), 한국(81.7%) 순으로 평가
- 한국의 이차전지 기술은 세계 최고수준(100.0%)이며, 우주항공·해양(55.0%), 양자(65.8%) 기술은 미국과 기술격차가 큰 것으로 나타남
- 논문·특허 분석 결과 한국의 논문의 질적지표는 전반적으로 4위권, 특허의 질적지표는 전반적으로 3위권으로 나타났으며, 반도체·디스플레이, 차세대통신, 이차전지 분야에 강점이 있음

1) (총괄) 미국(100.0%)이 최고기술 보유국, EU(92.3%), 중국(86.5%), 일본(85.2%), 한국(81.7%) 순으로 평가

 주요 5개국 국가전략기술 기술수준·격차 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
</tr>
<tr>
<td>국가전략기술</td>
<td>60개</td>
<td>100.0</td>
<td>0.0</td>
<td>81.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

 - 한국의 최고기술 분야는 이차전지로 나타남
 - 한국의 미국 대비 기술격차가 큰 기술은 우주항공·해양, 양자 분야인데 매우 도전적이나 반드시 확보해야 하는 필수기술로 평가됨

 * 22년도 평가부터 대형 다단연소 사이클론진, 우주 관측 센싱, 달착륙·표면 탐사, 창단 항공 가스터빈 엔진 부품 등 미래·도전적인 기술로 대상기술 대폭 확장
 - 한국은 총 12개 분야에서 주요 5개국 중 1위로 평가된 분야는 1개고, 2위는 1개, 3위는 2개, 4위와 5위로 나타난 분야는 각각 4개임

 주요 5개국 국가전략기술 12대 분야별 기술수준(%) 비교

<table>
<thead>
<tr>
<th>분야</th>
<th>미국</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
<td>수준(%)</td>
<td>격차(년)</td>
</tr>
<tr>
<td>반도체·디스플레이</td>
<td>100</td>
<td>0.0</td>
<td>89.0</td>
<td>1.3</td>
<td>84.4</td>
</tr>
<tr>
<td>이차전지</td>
<td>87.1</td>
<td>1.1</td>
<td>100</td>
<td>0.0</td>
<td>94.3</td>
</tr>
<tr>
<td>첨단모빌리티</td>
<td>100</td>
<td>0.0</td>
<td>84.2</td>
<td>2.1</td>
<td>86.3</td>
</tr>
<tr>
<td>차세대梅花차력</td>
<td>100</td>
<td>0.0</td>
<td>83.0</td>
<td>5.0</td>
<td>83.0</td>
</tr>
<tr>
<td>첨단바이오</td>
<td>100</td>
<td>0.0</td>
<td>78.1</td>
<td>3.1</td>
<td>78.1</td>
</tr>
<tr>
<td>우주항공·해양(27)</td>
<td>100</td>
<td>0.0</td>
<td>55.0</td>
<td>11.8</td>
<td>79.2</td>
</tr>
<tr>
<td>수소</td>
<td>100</td>
<td>0.0</td>
<td>78.6</td>
<td>3.3</td>
<td>72.7</td>
</tr>
<tr>
<td>사이버보안</td>
<td>100</td>
<td>0.0</td>
<td>84.3</td>
<td>2.3</td>
<td>88.8</td>
</tr>
<tr>
<td>인공지능</td>
<td>100</td>
<td>0.0</td>
<td>78.8</td>
<td>2.2</td>
<td>90.9</td>
</tr>
<tr>
<td>차세대통신</td>
<td>100</td>
<td>0.0</td>
<td>86.0</td>
<td>1.4</td>
<td>93.5</td>
</tr>
<tr>
<td>첨단모바일제조</td>
<td>100</td>
<td>0.0</td>
<td>82.0</td>
<td>2.3</td>
<td>82.9</td>
</tr>
<tr>
<td>양자</td>
<td>100</td>
<td>0.0</td>
<td>65.8</td>
<td>4.2</td>
<td>91.9</td>
</tr>
</tbody>
</table>

26) 기술격차는 선도국을 추적하는 데 소요되는 시간으로 국가별 축적된 연구역량 등에 따라 기술수준과 다르게 나타날 수 있음
37) 22년도부터 대형 다단연소 사이클론진, 달착륙·표면 탐사 등 미래·도전적인 기술로 대폭 확장되어 이전 평가와 단순 비교가 불가함
- 한국은 50개 국가전략기술 중 최고기술 보유국에 대비하여 기술수준이 90% 이상인 기술은 총 13개로 대부분 반도체·디스플레이, 이차전지 분야임

<table>
<thead>
<tr>
<th>주요 5개국 국가전략기술의 기술수준 구간별 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>수준</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>90% 이상</td>
</tr>
<tr>
<td>80-90%</td>
</tr>
<tr>
<td>80% 미만</td>
</tr>
</tbody>
</table>

- 한국의 최고기술 보유국 대비 수준 90% 이상 국가전략기술 현황

<table>
<thead>
<tr>
<th>연번</th>
<th>분야</th>
<th>국가전략기술</th>
<th>수준(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>반도체-디스플레이</td>
<td>반도체-디스플레이 소재·부품·장비기술</td>
<td>최고기술</td>
</tr>
<tr>
<td>2</td>
<td>프라임 디스플레이기술</td>
<td>프라임 디스플레이기술</td>
<td>최고기술</td>
</tr>
<tr>
<td>3</td>
<td>이차전지</td>
<td>리튬이온전지 및 핵심소재기술</td>
<td>최고기술</td>
</tr>
<tr>
<td>4</td>
<td>차세대 이차전지 소재·설계기술</td>
<td>최고기술</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>반도체·디스플레이</td>
<td>고정밀·저항기반 메모리기술</td>
<td>95.0</td>
</tr>
<tr>
<td>6</td>
<td>디스플레이</td>
<td>무기발광 디스플레이기술</td>
<td>91.0</td>
</tr>
<tr>
<td>7</td>
<td>이차전지</td>
<td>이차전지 모듈·시스템기술</td>
<td>97.5</td>
</tr>
<tr>
<td>8</td>
<td>반도체·디스플레이</td>
<td>이차전지 재사용·재활용기술</td>
<td>95.0</td>
</tr>
<tr>
<td>9</td>
<td>차세대통신</td>
<td>5G 고속화(5G Adv)기술</td>
<td>90.0</td>
</tr>
<tr>
<td>10</td>
<td>전기·수소차</td>
<td>6G기술</td>
<td>90.0</td>
</tr>
<tr>
<td>11</td>
<td>차세대통신</td>
<td>고음질 5G·6G 통신망기술</td>
<td>90.0</td>
</tr>
</tbody>
</table>

- 한국은 최고기술 보유국에 대비하여 3년 이상 격차 기술은 13개로 대부분 우주항공·해양, 양자 분야 등으로 파악됨

<table>
<thead>
<tr>
<th>주요 5개국 국가전략기술의 기술격차 구간별 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>격차</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>90% 이상</td>
</tr>
<tr>
<td>80-90%</td>
</tr>
<tr>
<td>80% 미만</td>
</tr>
</tbody>
</table>

- 한국의 최고기술 보유국 대비 격차 3년 이상 국가전략기술 현황

<table>
<thead>
<tr>
<th>연번</th>
<th>분야</th>
<th>국가전략기술</th>
<th>격차(년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>우주항공·해양</td>
<td>계단 항공 가스터빈 엔진·부품기술</td>
<td>15.0</td>
</tr>
<tr>
<td>2</td>
<td>대형 다단연소 사이클 엔진기술</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>달 착륙·표면 탐사기술</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>우주 관측·센싱기술</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>해양 자원탐사기술</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>양자</td>
<td>양자컴퓨팅기술</td>
<td>6.0</td>
</tr>
<tr>
<td>7</td>
<td>차세대원자력</td>
<td>신전원원자핵시스템·핵물관리 기술</td>
<td>6.0</td>
</tr>
<tr>
<td>8</td>
<td>수소</td>
<td>수소저장·운송기술</td>
<td>5.0</td>
</tr>
<tr>
<td>9</td>
<td>차단바이오</td>
<td>감염병 백신·치료기술</td>
<td>4.5</td>
</tr>
<tr>
<td>10</td>
<td>양자</td>
<td>양자센싱기술</td>
<td>4.3</td>
</tr>
<tr>
<td>11</td>
<td>차세대원자력</td>
<td>소형모듈원자로(SMR)기술</td>
<td>4.0</td>
</tr>
<tr>
<td>12</td>
<td>차단바이오</td>
<td>도심항공교통(UAM)기술</td>
<td>3.5</td>
</tr>
<tr>
<td>13</td>
<td>사이버안</td>
<td>네트워크·クラウ드 보안기술</td>
<td>3.3</td>
</tr>
</tbody>
</table>
한국은 전략기술 관련 논문·특허의 증가율이 2위 수준으로 활발한 연구 활동을 나타내며, 특허의 질적 수준도 대부분 3위권
- 특허는 양적으로는 중국, 질적으로는 미국의 우위가 두드러짐
- EU는 논문에 비해 상대적으로 특허는 약세이며, 일본은 해외출원도, 청구항수 등을 제외하면 전반적으로 한국보다 약세로 나타남

국가전략기술 관련 논문·특허 지표 분석 결과

<table>
<thead>
<tr>
<th>논문</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문점유율(%)</td>
<td>논문증가율(%)</td>
</tr>
<tr>
<td>미국</td>
<td>3위 20.4 4위 376.1 1위 26.3 3위 23.8 2위 0.84 3위 55.0</td>
<td></td>
</tr>
<tr>
<td>한국</td>
<td>5위 6.6 2위 524.1 4위 14.8 4위 5.8 5위 0.67 4위 25.1</td>
<td></td>
</tr>
<tr>
<td>중국</td>
<td>1위 34.5 1위 876.0 3위 16.8 2위 31.4 3위 0.80 2위 57.8</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>4위 7.5 5위 298.4 5위 13.6 5위 5.6 4위 0.72 5위 22.9</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>2위 31.0 3위 436.3 2위 19.9 1위 33.4 1위 0.91 1위 58.3</td>
<td></td>
</tr>
</tbody>
</table>

특허

<table>
<thead>
<tr>
<th>특허</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허점유율 (%)</td>
<td>특허증가율 (%)</td>
</tr>
<tr>
<td>미국</td>
<td>2위 17.2 3위 1052.4 2위 411.2 1위 10.5 1위 31.4 1위 33.2 1위 19.0</td>
<td></td>
</tr>
<tr>
<td>한국</td>
<td>3위 15.5 2위 3937.2 4위 249.2 3위 5.8 3위 18.3 2위 20.5 4위 10.4</td>
<td></td>
</tr>
<tr>
<td>중국</td>
<td>1위 46.6 1위 5158.1 5위 156.1 5위 3.9 2위 20.5 5위 10.9 5위 8.5</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>4위 11.9 4위 986.5 3위 296.8 4위 5.5 5위 14.1 4위 16.6 3위 11.2</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>5위 8.8 5위 538.7 1위 547.0 2위 7.6 4위 15.8 3위 18.9 2위 16.5</td>
<td></td>
</tr>
</tbody>
</table>

국가전략기술 논문·특허지표별 5개국 비교

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
</table>

- (기술분야별) 한국의 논문은 바도체·디스플레이, 모빌리티, 수소, 합성생활 화 등 일부 분야에서 상대적인 질적 강점이 있으며, 특허는 바도체·디스플레이, 차세대통신, 이차전지 분야에 양적·질적 강세가 두드러짐

28) 국가전략기술의 논문·특허 지표는 전체대상기술 논문 대비 34.6%(192.632건), 특허는 22.1%(334.767건)에 해당
29) 논문 발행건수가 많은 발표기관들을 제외한 참여도를 기반으로 연구인력 경쟁력과 다양성 측정
30) 개별 연구기의 연구 앞도와 성취, 학계에 미치는 영향력(논문 인용 횟수 등)을 자연수로 표현
31) 주요 4개(한국, 중국, 일본, EU) 국가 중 4곳에 동시에 출원한 특허의 비율을 기반으로 시장력을 측정
32) 발명의 수(청구량)를 기반으로 국가별·연구주체별 질적 경쟁력 측정
33) 국가별 비교를 위해 단위가 다른 논문, 특허 지표의 값을 각각 최고 수준국기를 100으로 하여 상대비교
〈 주요국별 국가전략기술 논문·특허의 양과 질 분석(34)〉

※ 한국 ■ 중국 ■ 일본 □ EU ■ 미국 , ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수

34) 집중도, 영향력 각 1을 넘으면 타 국 기술에 비해 상대적으로 우위(제1사분면에 있는 경우 양·질적으로 우수)
'국가전략기술 기술분야별 논문·특허 집중도-영향력 비교'

1. 반도체·디스플레이

2. 이차전지

3. 첨단모바일로

4. 차세대차량

[그림: 각 분야별 논문·특허 집중도-영향력 비교의 차트]

'한국' '중국' '일본' 'EU' '미국'
- **(H-Index**[^35])** 국가전략기술 12개 분야 중 EU는 6개 분야(첨단모바일리, 차세대 원자력, 우주항공·항해, 수소, 첨단로봇·제조, 양자), 미국은 3개 분야(반도체·디스플레이, 이차전지, 차세대통신)에서, 한국은 3개 분야(첨단바이오, 사이버보안, 인공지능)에서 우위를 보이고 있음

* 홀리(Jorge E. Hirsch, 미국 물리학자)가 2005년 제안한 지표이며, 발표한 논문 수와 논문별 피인용 횟수를 이용하여, 개인뿐만 아니라 기관, 국가의 연구 성과를 양적·질적 함께 고려하여 측정하는 데에 활용(논문을 많이 발행하면서 과도하게 높게 평가하는 것을 방지)

〈 국가전략기술 분야별 H-Index 분석 결과 〉

<table>
<thead>
<tr>
<th></th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. 반도체디스플레이</td>
<td>41.9</td>
<td>62.4</td>
<td>28.8</td>
<td>57.0</td>
<td>64.8</td>
</tr>
<tr>
<td>02. 이차전지</td>
<td>39.3</td>
<td>63.8</td>
<td>42.0</td>
<td>43.5</td>
<td>87.0</td>
</tr>
<tr>
<td>03. 첨단바이오</td>
<td>38.3</td>
<td>77.3</td>
<td>27.7</td>
<td>87.0</td>
<td>81.3</td>
</tr>
<tr>
<td>04. 자세한한력</td>
<td>17.4</td>
<td>36.0</td>
<td>19.3</td>
<td>47.0</td>
<td>42.0</td>
</tr>
<tr>
<td>05. 첨단바이오</td>
<td>15.5</td>
<td>35.5</td>
<td>116.5</td>
<td>63.0</td>
<td>8.0</td>
</tr>
<tr>
<td>06. 우주항공·항해</td>
<td>30.8</td>
<td>71.4</td>
<td>34.0</td>
<td>32.6</td>
<td>32.0</td>
</tr>
<tr>
<td>07. 수소</td>
<td>30.7</td>
<td>57.3</td>
<td>81.3</td>
<td>79.3</td>
<td>66.0</td>
</tr>
<tr>
<td>08. 사이버보안</td>
<td>24.3</td>
<td>65.3</td>
<td>15.6</td>
<td>61.0</td>
<td>55.0</td>
</tr>
<tr>
<td>09. 인공지능</td>
<td>11.5</td>
<td>42.5</td>
<td>39.8</td>
<td>34.5</td>
<td>21.3</td>
</tr>
<tr>
<td>10. 자세대통신</td>
<td>11.5</td>
<td>21.2</td>
<td>9.2</td>
<td>37.0</td>
<td>42.6</td>
</tr>
<tr>
<td>11. 첨단바이오</td>
<td>16.8</td>
<td>47.0</td>
<td>20.4</td>
<td>52.0</td>
<td>14.7</td>
</tr>
<tr>
<td>12. 방위</td>
<td>14.1</td>
<td>35.7</td>
<td>76.7</td>
<td>53.7</td>
<td>9.7</td>
</tr>
</tbody>
</table>

※ (x축) 주요 5개국, (y축) 평균 H-Index

- **(포트폴리오 분석)** 50개 국가전략기술에 대한 한국 논문·특허 집중도와 영향력을 비탕으로 국가전략기술별 연구활동 위치를 파악

- **(집중도**[^36]**↑, 영향력**[^37]**↑ 기술)** 논문과 특히의 집중도와 영향력 모두 높은 기술은 없지만, ▲이차전지 재사용·재활용, ▲5G 고도화, ▲고효율 5G·6G통신부품, ▲5G·6G 워싱통신, ▲프리폴디스플레이 등 5개 기술이 특히의 집중도와 영향력이 높은 편

- **(집중도**[^36]**↑, 영향력**[^37]**↓ 기술)** 논문·특허 모두 집중도는 높고 영향력 낮은 기술은 없으나, ▲리튬이온전지 및 핵심소재, ▲이차전지 모듈·시스템, ▲차세대 이차전지 소재·설, ▲첨단AI 모델링·의사결정(인지· 판단·추론), ▲산업 활용 혁신·AI, ▲안전·신뢰 AI, ▲고집착·저항기반 매모리 등 7개 기술이 특히의 집중도는 높고 영향력이 낮은 편

- **(집중도**[^36]**↓, 영향력**[^37]**↑ 기술)** 논문·특허의 집중도는 낮으나 영향력 높은 기술은 ▲수소연료전지 및 발전, ▲반도체 첨단패키징 등 2개로 파악

[^35]: H-Index : 과학기술부 표준화과에서 제정하며, 호주전략정책연구소(ASPI)의 기술분야 보고서 등에도 활용됨
[^36]: 특정 기술의 5개국 대비 국내 간수/전체 국가전략기술의 5개국 대비 국내 건수로 1보다 큰(작은) 경우 서울적 집중도가 높다(낮다)고 볼
[^37]: 특정 기술의 5개국 대비 국내 피인용비/전체 국가전략기술의 5개국 대비 국내 피인용비로 1보다 큰 경우 서울적 영향력이 높다고 볼
(한국의 국가전략기술별 논문·특허 집중도 자수 및 영향력 자수)

논문 포트폴리오

특허 포트폴리오

※ (특허) 논문(특허)의 집중도, (y축) 논문(특허)의 영향력
- 반도체 디스플레이
- 이차전지
- 첨단바이오
- 컴퓨터
- 인공지능
- 차세대전산
- 채단로봇
- 차세대크리
- 사이버보안
- 민간

※ 원 크기 : 기술별 논문, 특허 전체 건수

※ (특허 집중도, 2 이상 기술)
- 라디오 및 핵심소재(2.53)
- 고효율 5G/6G 통신부품(2.3)

※ (특허 영향력, 2 이상 기술)
- 수소연료전지 및 발전(2.93)
- 양자센서(4.73)
시사점

- 차세대 핵심기술 확보를 위한 기초연구개발역량의 확보가 시급하며, 개별 우수연구기관, 우수연구 성과를 토대로 추적의 발판을 만들 수 있음
- 초격차 유지 및 미래 생존 필수기술 확보를 위하여 기술별 강·약점, 분야별 정책수요를 파악하여 기술전략(도전·혁신) 수립이 필요

1 (성과) 한국의 국가전력기술 관련 논문·특허는 양적 측면에서 상대적으로 열세이나, 이차전지, 반도체·디스플레이 등 분야의 논문의 질적 성과는 우수하며, 특히의 경우는 양적, 질적 모두 우세한 분야도 있음
 - 미국은 양적 성과도 꾸준히 증가하는 가운데, 논문, 특히 모두 질적인 우위를 점하고 있음
 - EU는 논문은 지속적으로 증가하고 있으나, 특히는 하락세로 보이나, 논문의 양과 질 측면에서는 여전히 세계적 수준임
 - 중국의 연구성과는 양적 성장은 매우 높은 수준이고, 질적인 측면에서도 꾸준히 향상하고 있으나, 일본은 연구성과 성장이 하락세임.

주요 5개국 국가전력기술 논문·특허 추이

|----------------|-----------------|

※ 한국, 중국, 일본, EU, 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
발언 038 〈연구역량〉 한국은 전략기술의 기초연구개발역량이 타 국에 비해 낮은 수준38)이나 상당한 수준의 개발 연구의 성과를 토대로 추적의 발판을 마련할 수 있음

- 국가전략기술의 수준평가 결과, 한국은 응용연구개발역량에 비해 기초연구개발역량이 상대적으로 낮은 편으로 나타남
- 이는 한국의 주요 기술이 제조 및 공정에서 강점을 갖고 있으나, 선도기술 분야에서 차세대 핵심기술의 확보 측면에서는 한계가 될 수 있음을 시사
 ※ "기술을 도입하고 구현하는 방면에서는 확실한 우위가 있으나, 핵심기술의 부족은 여전히 문제"(반도체 분야 전문가)
 ※ "전해질 소재의 경우는 국내 기업의 원천 특허가 부족하여, 기초에서 응용에 이르기까지 폭넓은 지원이 필요해 보임"(이차전지 분야 전문가)

<table>
<thead>
<tr>
<th>주요국의 12대 국가전략기술 연구개발역량</th>
</tr>
</thead>
<tbody>
<tr>
<td>분야</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>국가전략기술</td>
</tr>
<tr>
<td>첨단모빌리티</td>
</tr>
<tr>
<td>우주항공</td>
</tr>
<tr>
<td>첨단로봇·제조</td>
</tr>
<tr>
<td>첨단바이오</td>
</tr>
<tr>
<td>이차전지</td>
</tr>
<tr>
<td>수소</td>
</tr>
<tr>
<td>차세대 원자력</td>
</tr>
<tr>
<td>인공지능</td>
</tr>
<tr>
<td>5G·6G</td>
</tr>
<tr>
<td>사이버 보안</td>
</tr>
<tr>
<td>반도체·디스플레이</td>
</tr>
<tr>
<td>양자</td>
</tr>
</tbody>
</table>

- 기초연구개발역량, 응용연구개발 역량 모두 ‘보통’인 우주항공·해양분야, 인공지능, 양자분야는 국가안보와 직접되어 핵심기술의 해외 도입도 쉽지 않아 자체적 원천기술 확보가 불가피
- 다만, 기술수준평가 결과 우주항공·해양분야에서 항우연, 인공지능분야의 연세대학교, 양자분야의 ETRI, 삼성, LG 등에서 기술분야별 상위 10위 내의 논문, 특허 성과를 내고 있는 등, 개별 연구의 성과는 상당한 수준인 것으로 보이며, 이를 바탕으로 추적에 대한 발판을 만들어야 할 필요

38) 연구개발단계별 연구개발단계는 "탁월, 우수, 보통, 미흡, 부족"의 5단계이거나 주요국의 경우 미흡, 부족 단계 결과는 거의 없어 ‘보통’ 수준이 사실상 가장 낮은 수준
대형 다단연소 사이클엔진기술(특허) | 달착륙·표면 탐사기술(특허)
---|---
THE BOEING(주어) | HAARVIN INST OF TECHNOLOGY(주어) | 12
BEIJING INST CONTROL ENGN(주어) | UNIV NANNING AERONAUTICS(주어) | 3
SEIMEI(주어) | BEIJING RES INST SPATIAL(주어) | 3
한국병렬우주기술원(주어) | SHANGHAI AEROSPACE SYSTEM(주어) | 10
TAES(주어) | BEIJING INST TECHNOLOGY(주어) | 10
SHANGHAI SATELLITE ENG INST(주어) | BEIJING INST SPACECRAFT SYSTEM(주어) | 10
CHINA ACADEMY SPACE... | BEIJING INST CONTROL ENGN(주어) | 9
SAFIRAN AIRCRAFT ENG... | BEIJING SPACE TECH RESEARCH & TEST... | 9
ARIAENGROUP SAE(주어) | BEIJING INST CONTROL TECH ENGN(주어) | 8
SHANGHAI INST SPACE... | | 8

안전·신뢰기술(논문)	양자통신기술(특허)
UNIVERSITY OF OXFORD(주어) | QUALCOMM(주어) | 201
CAMBRIDGE MELLON UNIVERSITY(주어) | CODEX(주어) | 150
STANFORD UNIVERSITY(주어) | FUJITSU(주어) | 138
UNIVERSITY OF CALIFORNIA(주어) | HTC(주어) | 128
UNIVERSITY OF VIRMINGHAME(주어) | HUAWEI TECHNOLOGIES(주어) | 121
GEORGIA INSTITUTE OF TECHNOLOGY(주어) | SAMSUNG(주어) | 110
IBM RESEARCH(주어) | CANNON(주어) | 110
UNIVERSITY OF CAMBRIDGE(주어) | CANON(주어) | 113
DEUT UNIVERSITY OF TECHNOLOGY(주어) | LG(주어) | 100

안전·신뢰기술(논문)	양자통신기술(특허)
UNIVERSITY OF OXFORD(주어) | QUALCOMM(주어) | 201
CAMBRIDGE MELLON UNIVERSITY(주어) | CODEX(주어) | 150
STANFORD UNIVERSITY(주어) | FUJITSU(주어) | 138
UNIVERSITY OF CALIFORNIA(주어) | HTC(주어) | 128
UNIVERSITY OF VIRMINGHAME(주어) | HUAWEI TECHNOLOGIES(주어) | 121
GEORGIA INSTITUTE OF TECHNOLOGY(주어) | SAMSUNG(주어) | 110
IBM RESEARCH(주어) | CANNON(주어) | 110
UNIVERSITY OF CAMBRIDGE(주어) | CANON(주어) | 113
DEUT UNIVERSITY OF TECHNOLOGY(주어) | LG(주어) | 100

3 (정책제안)	초격차 유지 및 미래생존필수 기술 확보를 위하여 세부기술별 강·약점, 분야별 정책수요를 파악하여 기술전략을 수립할 필요
한국의 우위에 있는 반도체, 이차전지 분야도 전력반도체, 소재기술 등 상대적으로 취약한 분야의 해외경쟁력을 적극 고려할 필요
우주항공·해양 분야는 본격적·독자적인 심유주무관함수를 위한 출발 단계이므로 중장기적 관점의 개발계획 지속 및 국제연구개발 참여를 강화
ICT 분야에 반드시 필요한 SW아님은 반도체, 인공지능 분야에 쓸립이 심화되고 있어, 디스플레이, 사이버보안, 통신, 침단로봇·제조 분야에 우수인이 고루 배분될 수 있도록 정책적 방안 마련 필요
<table>
<thead>
<tr>
<th>분야</th>
<th>전문가 의견</th>
<th>전문가 정책 제언</th>
</tr>
</thead>
<tbody>
<tr>
<td>현산 선도</td>
<td>풍도·디스플레이</td>
<td>인간양성 석박사급 인력이 좋으며 안정적 연구 수행할 수 있는 생태계 필요. 풍도/디스플레이 분야 인력 공동양성 필요</td>
</tr>
<tr>
<td></td>
<td>인프라 대기업 연구인프라는 잘 구축되어 있으나, 연구소 및 학계, 풍도 관련 중소기업 인프라는 부족, 공용 Fab, Test Bed 구축 필요</td>
<td></td>
</tr>
<tr>
<td>이자전지</td>
<td>상공계 리튬이온전지, 양극체 기술에서 최고 수준이나, 소재부문이 성대로 역할</td>
<td>인프라 이자전지의 해심 성능 인사 등의 적극기술을 분석하고 이해하는 연구가 미흡하여 이에 대한 지원 필요</td>
</tr>
<tr>
<td></td>
<td>인간양성 고체소재, 이온성 산화물 소재의 전문인력 증가가 필요적</td>
<td></td>
</tr>
<tr>
<td>첨단 모바일리티</td>
<td>차량단위 시스템 성능, 수소차 연구전지 부품 기술은 세계 최고수준이나, 차량 직접기술은 선두 그룹에 비해 다소 뒤처짐</td>
<td>인프라 자율주행 성능화에 관한 시험장검증 인프라 구축, 전기·수소차 충전 인프라의 지역간 불균형 해소 필요</td>
</tr>
<tr>
<td></td>
<td>법제도 안정한 서비스 실증을 위한 구체적 법령 정비 필요</td>
<td></td>
</tr>
<tr>
<td>차세대 원자력</td>
<td>i-SMR 기술개발에 연구기반·설계·인허자를 동시에 수행중이나, 검증시험, 신기술 적용 등에 어려움</td>
<td>연구비 검증시험, 제조기술검증, 유지보수 방안검토 등에 필요한 연구비 필요</td>
</tr>
<tr>
<td></td>
<td>법제도 기존 대형발전소에 적용되어 오던 안전가 음성의 효율화 및 실증화 필요</td>
<td></td>
</tr>
<tr>
<td>첨단바이오</td>
<td>미국, EU가 우위에 있으나, 분야별로 논문, 특히에서 우수한 성과가 나타나고 있음</td>
<td>인프라 공공바이오파운드러, 디지털 혁신과 영역별 DB 및 데이터 분석을 위한 Test Bed 구축 필요</td>
</tr>
<tr>
<td>미래 도전</td>
<td>신도시 대비 후발 주자의 위기에 있으나, 본격적인 수요지역 성장기념 서울발전성이 있음</td>
<td>법제도 비정상 적인 정책의 개발개정 수립 필요</td>
</tr>
<tr>
<td>우주항공·해양</td>
<td>신도시 대비 후발 주자의 위기에 있으나, 본격적인 수요지역 성장기념 서울발전성이 있음</td>
<td>인프라 중장기적 관할의 개발개정 수립 필요</td>
</tr>
<tr>
<td></td>
<td>국제협력 누리호, 디너리 사업 등을 통해 국제사회에서 한국의 영향력을 강화하고 있으며, 한국 강점을 제시하고 참여할 수 있는 기회를 늘리야 함</td>
<td></td>
</tr>
<tr>
<td>수소</td>
<td>수소차량 개발 등 상당한 성과를 갖고 있으나, 수신해 핵심기술의 추가적인 확보가 필요함</td>
<td>인프라 수소의 생산/저장/운송/활용을 유기적으로 연계시킬 필요</td>
</tr>
<tr>
<td></td>
<td>법제도 실효를 통한 성과를 위한 법제도 개편 필요</td>
<td></td>
</tr>
<tr>
<td>사이버안전</td>
<td>한국은 상용보안에 차등된 처우이며, 중국은 부동한 자급자족 정책으로 한국을 뒤دير 남미, EU를 추격 중</td>
<td>인간양성 중소기업 비중이 높으나 높은 이직률로 인력양성 및 수급이 어려움</td>
</tr>
<tr>
<td></td>
<td>연구비 보안업체들의 영세성으로 핵심적 투자 여력 부족</td>
<td></td>
</tr>
<tr>
<td>인공지능</td>
<td>초기대 모델의 학습과 대규모 ML 서비스 경험이 있고, 소프트웨어 인프라의 경쟁력은 빈약</td>
<td>인간양성 AI 활용을 넓혀서 연구와 기술선도가 가능한 최고급 인력양성 필요</td>
</tr>
<tr>
<td></td>
<td>연구비 인프라 구축과 기술개발 과제 분리 필요</td>
<td></td>
</tr>
<tr>
<td>필수 기반</td>
<td>한국이 선단하고 있으나 현장기술개발이 필요하며, 중국의 논문, 특허 등 기술수준이 높은 편</td>
<td>인간양성 AI 활용을 넓혀서 연구와 기술선도가 가능한 최고급 인력양성 필요</td>
</tr>
<tr>
<td>첨단로봇·제조</td>
<td>한국은 양산기술에서 뒤어나지만, 원천기술개발이 필요하며, 중국의 논문, 특허 등 기술수준이 높은 편</td>
<td>인간양성 인프라 구축과 기술개발 과제 분리 필요</td>
</tr>
<tr>
<td>양자</td>
<td>한국은 후발주자이나 중국과 함께 양자암호 통신 분야에서 두각을 나타내고 있으며, 각국 정부는 정책적으로 양자기술 sincer 영속성하고 있음</td>
<td>인간양성 AI 활용을 넓혀서 연구와 기술선도가 가능한 최고급 인력양성 필요</td>
</tr>
<tr>
<td></td>
<td>인프라 기업군의 인력이 양성될 수 있도록 정부기반 기술개발과제의 수행과정에서 산업계 인력이 많이 참여하도록 유도해야 함</td>
<td></td>
</tr>
<tr>
<td></td>
<td>인프라 국가 개발 사업을 통해서 만들어나가는 모든 결과물 개방형 인프라로 공개하는 전략이 요구됨</td>
<td></td>
</tr>
</tbody>
</table>
참고

논문으로 본 중국 기술수준의 부상

- 세계 각국 기관들의 최근 분석 결과는 2020년대에 중국 연구역량의 질적 수준이 최고 수준에 도달하고 있음을 보여준다.

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU JRC</td>
<td>'China 2.0 - Status and Foresight of EU-China Trade, Investment and Technological Race' (23.1)</td>
</tr>
<tr>
<td>ex</td>
<td>• 상위 1% 논문의 접유율에서 중국은 EU를 2016년에 앞서고, 2020년에 미국에 근접한 수준에 도달 * Web of Science DB 분석</td>
</tr>
<tr>
<td>호주 ASPI</td>
<td>'The global race for the future power' (23.2)</td>
</tr>
<tr>
<td>ex</td>
<td>• 44개 핵심기술 중 37개 분야에서 중국이 1위, 나머지 7개에서 미국이 1위 * 후보 기업의 중요기술 목록을 기반으로 선정된 44개 기술에 대해 Web of Science DB를 활용 '18~'22년간 연구 논문 220만편에 대해 H-index, 고인용 상위 10% 논문 분석</td>
</tr>
<tr>
<td>nature Nature Index</td>
<td>'Nature Index Annual Tables 2023' (23.6)</td>
</tr>
<tr>
<td>ex</td>
<td>• 2022년 자연과학분야에서 중국의 접유율은 '21년 대비 21%이상 급상승하며 처음으로 미국을 여유롭게 추월 * 2022년 Nature Index에서 선정한 82개 자연과학 자필의 출판물 점유율 * Share 기준 : 각 논문의 저자인 소속 연구원의 비중을 통해 각 국가 또는 기관의 기여도를 추정하는 기준</td>
</tr>
<tr>
<td>일본 NISTEP</td>
<td>'과학기술지표 2023' (23.8)</td>
</tr>
<tr>
<td>ex</td>
<td>• '90년대 후반부터 전제 논문(양적), Top10%, Top1% 논문(질적) 의 비중이 높아지면서, 2020년 시행에서 중국은 세부 문 모두 1위 * '22년말 시점에서 NISTEP이 Web of Science DB를 이용, '82~'20년까지의 사회과학을 제외한 논문을 분석</td>
</tr>
</tbody>
</table>
일본의 과학기술 관련 지표

- 일본은 2000년대 중반 이후 연구개발투자 및 기업·대학 연구자 수, 박사과정 입학생 수 등의 지표가 전반적으로 둔화

일본과 타 국가의 기업, 대학부문 연구개발비 명목액 비교(OECD 구매력평가 환산)

일본과 타 국가의 기업, 대학부문 연구자 수 추이 비교

* 미국의 데이터가 OECD에 공표되지 않은 기간은 점선 표시

일본의 대학원(박사과정) 입학자 수

* 자료 : 과학기술지표2023(문부과학성, 과학기술·학술정책연구소)
제 3 장
전체대상기술 11대 분야별
평가 결과

1. 건설·교통
2. 재난안전
3. 우주·항공·해양
4. 국방
5. 기계·제조
6. 소재·나노
7. 농림수산·식품
8. 생명·보건의료
9. 에너지·자원
10. 환경·기상
11. ICT·SW
제3장 전체 대상기술 11대 분야별 평가 결과

1 건설·교통

- 기술수준·격차: 한국의 기술수준은 최고기술 보유국(미국) 대비 85.3% 수준이며, 2.3년 격차를 보임
 - 국가별: 미국, EU를 일본, 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.3년, 2.8년의 격차를 보이고 있음
 - 기술별: 한국의 전기·수소차기술은 95%수준으로 건설·교통 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 분야는 도심항공교통(UAM)기술임

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설·교통 분야</td>
<td>85.3</td>
<td>2.3</td>
<td>최고</td>
</tr>
<tr>
<td>자율주행시스템기술</td>
<td>80.0</td>
<td>1.8</td>
<td>최고</td>
</tr>
<tr>
<td>전기·수소차기술</td>
<td>95.0</td>
<td>1.0</td>
<td>최고</td>
</tr>
<tr>
<td>도심항공교통(UAM)기술</td>
<td>77.5</td>
<td>3.5</td>
<td>최고</td>
</tr>
<tr>
<td>지능형 건물관리기술</td>
<td>82.0</td>
<td>3.0</td>
<td>최고</td>
</tr>
<tr>
<td>친환경 다기능 건설재료 기술</td>
<td>80.5</td>
<td>2.3</td>
<td>최고</td>
</tr>
<tr>
<td>스마트홈 기술</td>
<td>85.5</td>
<td>1.5</td>
<td>최고</td>
</tr>
<tr>
<td>지속가능한 도시재생 기술</td>
<td>85.0</td>
<td>3.5</td>
<td>최고</td>
</tr>
<tr>
<td>스마트시티 구축 및 운영 기술</td>
<td>85.5</td>
<td>2.0</td>
<td>최고</td>
</tr>
<tr>
<td>국토공간정보 구축 및 분석기술</td>
<td>82.0</td>
<td>3.0</td>
<td>최고</td>
</tr>
<tr>
<td>지속가능한 인프라 구조물 건설기법</td>
<td>85.0</td>
<td>3.0</td>
<td>최고</td>
</tr>
<tr>
<td>복제미터 기반 국가 인프라 예방적 유지관리 기술</td>
<td>85.0</td>
<td>3.0</td>
<td>최고</td>
</tr>
<tr>
<td>스마트 철도교통 기술</td>
<td>87.0</td>
<td>2.8</td>
<td>최고</td>
</tr>
<tr>
<td>지능형 물류체계기술</td>
<td>85.0</td>
<td>2.5</td>
<td>최고</td>
</tr>
</tbody>
</table>

* 국가전략기술
(중간) 대부분의 기술이 '20년 대비 기술수준이 증가하였으나, 스마트시티 구축 및 운영기술은 다소 감소

〈 기술수준 및 기술격차 증감 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준</th>
<th>기술격차</th>
<th>기술수준그룹</th>
<th>'20</th>
<th>'22</th>
<th>증감</th>
<th>'20</th>
<th>'22</th>
<th>증감</th>
</tr>
</thead>
<tbody>
<tr>
<td>지능형 건물관리기술</td>
<td>82.0</td>
<td>82.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>천황성 다이어스 건설재료 기술</td>
<td>80.0</td>
<td>80.5</td>
<td>0.5</td>
<td>3.0</td>
<td>2.3</td>
<td>0.8</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>스마트홈 기술</td>
<td>85.0</td>
<td>85.5</td>
<td>0.5</td>
<td>1.8</td>
<td>1.5</td>
<td>0.3</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>지속가능한 도시재생 기술</td>
<td>80.0</td>
<td>85.0</td>
<td>5.0</td>
<td>3.5</td>
<td>3.5</td>
<td>0.0</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>스마트시티 구축 및 운영 기술</td>
<td>86.5</td>
<td>85.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>0.5</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>국토공간정보 구축 및 분석기술</td>
<td>81.0</td>
<td>82.0</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>지속가능한 인프라 구조물 건설기술</td>
<td>85.0</td>
<td>85.0</td>
<td>0.0</td>
<td>3.8</td>
<td>3.0</td>
<td>0.8</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>빅데이터 기반 국가 인프라 예방적 유지관리 기술</td>
<td>80.0</td>
<td>85.0</td>
<td>5.0</td>
<td>3.5</td>
<td>3.0</td>
<td>0.5</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>스마트 철도교통 기술</td>
<td>86.5</td>
<td>87.0</td>
<td>0.5</td>
<td>3.0</td>
<td>2.8</td>
<td>0.3</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
<tr>
<td>지능형 물류체계기술</td>
<td>80.0</td>
<td>85.0</td>
<td>5.0</td>
<td>3.0</td>
<td>2.5</td>
<td>0.5</td>
<td>추가</td>
<td>추가</td>
<td>-</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 기술전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

■ (연구개발역량-경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

(중간) 다만, 기초연구개발역량은 13개 기술 중 8개 기술이 ‘보통’ 수준으로 응용연구개발역량에 비해 상대적으로 취약

〈 연구개발역량 및 연구활동경향 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설·교통 분야</td>
<td>한국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>자율주행시스템기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>전기·수소차기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>도심형공통통(AAM)기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지능형 건물관리기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>천황성 다이어스 건설재료 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>스마트홈 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지속가능한 도시재생 기술</td>
<td>보통</td>
<td>우수</td>
<td>팽활</td>
</tr>
<tr>
<td>스마트시티 구축 및 운영 기술</td>
<td>우수</td>
<td>우수</td>
<td>팽활</td>
</tr>
<tr>
<td>국토공간정보 구축 및 분석기술</td>
<td>보통</td>
<td>우수</td>
<td>팽활</td>
</tr>
<tr>
<td>지속가능한 인프라 구조물 건설기술</td>
<td>우수</td>
<td>우수</td>
<td>팽활</td>
</tr>
<tr>
<td>빅데이터 기반 국가 인프라 예방적 유지관리 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>스마트 철도교통 기술</td>
<td>보통</td>
<td>우수</td>
<td>팽활</td>
</tr>
<tr>
<td>지능형 물류체계기술</td>
<td>보통</td>
<td>우수</td>
<td>팽활</td>
</tr>
</tbody>
</table>

* □ 국가는 전략기술
(논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 4-5위권 수준으로 나타남

(지표별) 한국의 논문·특허의 증가율은 중국에 이어 2위 수준이며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>4.9%</td>
<td>302.7%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>33.1%</td>
<td>318.4%</td>
</tr>
<tr>
<td>일본</td>
<td>3.2%</td>
<td>130.0%</td>
</tr>
<tr>
<td>EU</td>
<td>42.3%</td>
<td>211.2%</td>
</tr>
<tr>
<td>미국</td>
<td>16.0%</td>
<td>252.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>12.1%</td>
<td>588.7%</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>60.0%</td>
<td>1241.7%</td>
</tr>
<tr>
<td>일본</td>
<td>7.9%</td>
<td>443.6%</td>
</tr>
<tr>
<td>EU</td>
<td>7.0%</td>
<td>289.5%</td>
</tr>
<tr>
<td>미국</td>
<td>13.0%</td>
<td>444.4%</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

(논문·특허지표별 주요 5개국 수준)
阳县, 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특허의 질은 미국이 우위에 있는 것으로 나타남.

〈 논문·특허의 양과 질 분석 〉

논문의 양(집중도)과 질(영향력)

특허의 양(집중도)과 질(영향력)

※ 한국, 중국, 일본, EU, 미국, ※ 원 크기: 각 국가의 기술별 논문, 특허 전체 건수
<table>
<thead>
<tr>
<th>분야별(건설·교통) 정책 제안</th>
</tr>
</thead>
<tbody>
<tr>
<td>건축 관련 기술</td>
</tr>
<tr>
<td>• (지능형 건물관리기술) 주로 신기술 및 신자가지에 기반하여 신속하게 수용하고 확대, 보급되기 위해서는 관련 법, 제도의 부재로 재·개정 작업이 선행되어야 함</td>
</tr>
<tr>
<td>• (지능형 건물관리기술) 건물관리 과정에서 발생하는 빈대 데이터를 획득하기 위한 방안과 획득된 데이터를 저장, 운용하기 위한 방안과 데이터 분석하기 위한 방안이 필요</td>
</tr>
<tr>
<td>• (환경적 다기능 건설재료 기술) 타 산업에 비해 건설산업은 현장 적용 및 실용화해 전 단계에 많은 기존, 표준 및 지침 등의 공인 기준의 준수를 요구하고 있음. 신재료의 적용도 미진가지로 기존에 있는 법률 및 제도에 규제를 받아서 시간과 예산의 자연이 발생하는 경우 많음. 건설 신재료에 대해 초기 또는 우선 적용이 가능하도록 제도의 간소화가 필요함</td>
</tr>
<tr>
<td>• (스마트홈 기술) 최근 Matter 등 글로벌 표준에 따라 국내 시장 보호 및 국내 제품의 국제 진출을 위한 국외 표준 단계와 협력 필요</td>
</tr>
<tr>
<td>• (스마트홈 기술) 선도국가인 미국의 경우 인공지능기술, AIOT 기술 등에 대한 연구비 확대를 통해 한국과학기술중심 기술개발과 기술격차를 벌이고 있는 상황을 고려할 때, 국내외 연구비 확대를 통한 연구성과가 요구됨</td>
</tr>
<tr>
<td>도시 및 국토 관련 기술</td>
</tr>
<tr>
<td>• (스마트시티 구축 및 운영 기술) 국내 협력 촉진을 위해 스마트시티 구축 관련 기술 및 기업 list를 공개하며 주요, 이를 통하여 상호협력을 촉진하고, 기술의 융합성을 확대할 수 있음</td>
</tr>
<tr>
<td>• (스마트시티 구축 및 운영 기술) 스마트시티의 추진 혹은 시행하는 기술을 개발하는 주체들 간의 협력적 네트워크를 통한 경제 교류와 시너지효과 창출을 위한 제공 필요. 개발된 기술을 바탕으로 실제로 서비스로 적용하고 있는 시각적 간의 네트워킹이 중요</td>
</tr>
<tr>
<td>• (도시공간정보 구축 및 분석 기술) 국토공간정보의 경우 보안법에 의해 활용데이터 및 활용처 등에 대한 제약이 있어 산업적 측면에서 성장하지 못하고 있으므로, 이러한 부분은 해소할 수 있도록 법·제도 개선이 시급하다고 생각됨</td>
</tr>
<tr>
<td>• (도시공간정보 구축 및 분석 기술) 공공 정보 성격이 강하고 보안 문제가 있어 데이터를 자유롭게 응용할 수 있는 인프라 필요</td>
</tr>
<tr>
<td>사회기반시설 관련 기술</td>
</tr>
<tr>
<td>• (지속가능한 인프라 구조물 건설기술) 인프라 건설산업은 전통적인 수주산업으로 품질에 기반한 낙찰률 적정과 허도급 등 동아시아에만 존재하는 독특한 구조가 시장·생태계를 지배하고 있음. 글로벌 환경에서 세계시장 진출을 적극 지원하기 위해서는 발주시스템의 다양화 및 개선이 필요함</td>
</tr>
<tr>
<td>• (지속가능한 인프라 구조물 건설기술) 지속가능한 공간과 자하물리시스템에 연구개발 투자 확대 자하공간기술 연구단 구성 및 시범 구축 필요</td>
</tr>
<tr>
<td>• (빅데이터 기반 국가 인프라 예방적 유지관리 기술) 빅데이터 기반 기반 체계 생태계가 일어날 수 있도록 공공데이터의 활용에 대한 편의성을 증가시키고 관련 분야 법제도를 개선해야함. 특히 재해 및 안전과 관련된 사회체제인 인식에 대한 충분한 재정이 투입될 수 있는 법적 근거가 마련되어야함</td>
</tr>
<tr>
<td>• (빅데이터 기반 국가 인프라 예방적 유지관리 기술) 유지관리 분석을 할 수 있는 FMS 입력 체계 구축 및 기타 빅데이터 분석을 할 수 있는 다양한 플랫폼의 데이터 연계체계 확립 필요. 입력 체계 구축과 함께 기존 데이터(비정형)의 활용 및 입력 오류 개선을 위한 방법 마련 필요</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>철도·물류 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (스마트 철도교통 기술) 하이마루포와 같은 국제적 관심을 갖는 연구 주제에 대하여 민관국제협력 추진. K철도의 해외진출을 준비하기 위한 철도 종합기술기 초청 연수 활성화 필요</td>
</tr>
<tr>
<td>• (스마트 철도교통 기술) 철도차량, 철도인프라 분야에 대한 스마트 철도기술이 정착되어 운용 중에 있으나, 스마트 시스템별 개별적인 운영으로 종합적인 판단 및 의사결정 불가능. 이를 통합하여 운영할 수 있는 인프라 구축이 시급함</td>
</tr>
<tr>
<td>• (지능형 물류체제 기술) 국제 물류 경쟁력 향상을 위해 내륙물류의 무인화물차량, 해상운송의 무인운항, Port 기반 서비스 통합 등의 기술 개발을 위한 연구비 확대가 필요</td>
</tr>
<tr>
<td>• (지능형 물류체제 기술) 지능형 물류 체계는 대용량의 데이터 수집·분석하고 최적화된 물류 프로세스 구현을 하기 위해 데이터 수집·관리하기 위한 인프라가 반드시 필요함. 또한 통신, 보안, 자동화 등에 대한 인프라와 기술이 필요함</td>
</tr>
</tbody>
</table>

※ 해당부가 기술 중 국가전략기술 관련 정책제안은 Ⅳ장 참조
2. 재난안전

■ (기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 81.3% 수준이며, 2.6년 격차를 보임

✔ (국가별) 미국, EU를 일본, 한국, 중국이 추적하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.6년, 3.1년의 격차를 보이고 있음

✔ (기술별) 한국의 재난현장 소방구조 장비·시스템기술은 85%수준으로 재난안전 분야에서 가장 높은 기술수준을 보이고 있음

〈 기술수준 및 기술격차 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>재난안전</td>
<td>81.3</td>
<td>78.1 87.5 92.6 1000</td>
<td>2.6 3.1 1.6 0.9 0.0</td>
</tr>
<tr>
<td>북한재난 스마트 예측·대응기술</td>
<td>80.0</td>
<td>70.0 85.0 95.0 1000</td>
<td>3.5 5.0 2.0 1.0 0.0</td>
</tr>
<tr>
<td>빗자-태극 통합 지능형 예측·대응시스템 기술</td>
<td>80.0</td>
<td>80.0 85.0 90.0 1000</td>
<td>3.5 5.0 2.0 1.0 0.0</td>
</tr>
<tr>
<td>재난 전주기 정보통신체계기술</td>
<td>80.0</td>
<td>79.0 90.0 90.0 1000</td>
<td>2.0 2.5 1.0 1.0 0.0</td>
</tr>
<tr>
<td>재난현장 소방구조 장비·시스템 기술</td>
<td>85.0</td>
<td>83.5 90.0 95.3 1000</td>
<td>2.3 2.5 1.5 0.8 0.0</td>
</tr>
</tbody>
</table>

✔ (증감) 대부분의 기술이 '20년 대비 기술수준이 유지되고 있으며, 재난현장 소방구조 장비·시스템기술은 기술수준이 상승하였으나, 기술격차도 단축됨

〈 기술수준 및 기술격차 증감 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>북한재난 스마트 예측·대응기술</td>
<td>80.0</td>
<td>80.0 0.0 4.0 3.5 △0.5</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>빗자-태극 통합 지능형 예측·대응시스템 기술</td>
<td>80.0</td>
<td>80.0 0.0 2.5 2.5 0.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>재난 전주기 정보통신체계기술</td>
<td>80.0</td>
<td>80.0 0.0 2.0 2.0 0.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>재난현장 소방구조 장비·시스템 기술</td>
<td>81.5</td>
<td>85.0 3.5 3.0 2.3 △0.8</td>
<td>추격 추격 -</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

■ (연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

✔ 다만, 기초연구개발역량은 4개 기술 중 2개 기술이 '보통' 수준으로 응용연구개발역량에 비해 상대적으로 취약
연구개발역량 및 연구활동경향

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>재난안전</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td></td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>복합재난 스마트 예측·대응기술</td>
<td>보통</td>
<td>우수</td>
<td>탃�월</td>
</tr>
<tr>
<td>범죄·대테러 통합 지능형 예측·대응시스템 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>재난 전주기 정보통신체계기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>재난현장 소방구조 장비·시스템 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>

논문·특허 분석결과

한국의 논문·특허의 증가율은 2위 수준이며, 점적 수준은 4~5위권 수준으로 나타난다.

지표별

한국의 논문·특허의 증가율은 1~2위 수준이며, 전반적으로 논문의 점적 수준은 EU가, 특허의 점적 수준은 미국이 우위에 있음

논문분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>3.6%</td>
<td>107.1%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>한국</td>
</tr>
<tr>
<td>중국</td>
<td>27.2%</td>
<td>60.0%</td>
</tr>
<tr>
<td>일본</td>
<td>6.1%</td>
<td>31.8%</td>
</tr>
<tr>
<td>EU</td>
<td>36.2%</td>
<td>37.4%</td>
</tr>
<tr>
<td>미국</td>
<td>27.1%</td>
<td>18.1%</td>
</tr>
</tbody>
</table>

특허분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>21.8%</td>
<td>195.7%</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>48.7%</td>
<td>283.1%</td>
</tr>
<tr>
<td>일본</td>
<td>12.6%</td>
<td>-9.8%</td>
</tr>
<tr>
<td>EU</td>
<td>4.9%</td>
<td>70.1%</td>
</tr>
<tr>
<td>미국</td>
<td>12.1%</td>
<td>21.8%</td>
</tr>
</tbody>
</table>
〈논문·특허지표별 주요 5개국 수준〉

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 집유율</td>
<td>특허 집유율</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>특허 영향력</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

☑ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특허의 질은 미국이 우위에 있는 것으로 나타남

〈논문·특허의 양과 질 분석〉

<table>
<thead>
<tr>
<th>논문의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 집중도 지수</td>
</tr>
<tr>
<td>특허 집중도 지수</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 갯수
<table>
<thead>
<tr>
<th>재난안전 관련 기술</th>
</tr>
</thead>
</table>
| 1. (복합재난 스마트 예측·대응 기술) 정확도가 높은 AI 기반 복합재난 예측 및 대비 관련 모델을 만들고 이를 실제 상황에 적용하기 위해서는 재난 종류별 축적된 많은 기초 자료들이 필요함. 그 이유는 얼마나 많은 다양한 정보를 AI에 제공하는가에 따라 AI의 예측 정확도가 달라질 수 있기 때문임.
| 2. (복합재난 스마트 예측·대응 기술) 실증적 연구 및 성향 해석은 아직 미흡함. 기술 채용도를 높이기 위해서는 다양한 재난 유형을 유연하게 고려할 수 있는 실험시설 및 장비 확보가 절실히 필요하다.
| 3. (범죄·테러 통합 지능형 예측·대응시스템 기술) 국제 기술을 modify하여 활용하고 있는 성향이 많지만, 정보 유출 등을 고려할 때 국내 자체 기술개발이 되어야 할 것으로 보임.
| 4. (범죄·테러 통합 지능형 예측·대응시스템 기술) 개인정보보호 등과 관련된 높은 수준의 규제와 애매함은 기술 개발에 많은 제약적 요소로 작용하고 있으므로 보다 구체적이고 명확한 법제도를 위한 개선 필요
| 5. (재난현장 전주기 정보통신체계 기술) 연구개발과제의 성과를 확대하고 실효성을 높이기 위해서는 해당 분야의 신뢰성 있는 데이터베이스, 운영환경정보, 시험환경정보, 관련 현장경험을 가진 전문인력 등의 참여와 기관 협력이 중요한 요소임.
| 6. (재난현장 전주기 정보통신체계 기술) 데이터 기반의 재난감지 발전을 위해서는 개인정보 보호 등의 데이터 활용에 문제가 되는 사람들에 대한 사전검토 및 제도 개선이 신속히 필요하다.
| 7. (재난현장 소방구조 장비·시스템 기술) 개발된 재난·재해 기술이 국제기준과 부합하기가 높게 요구를 성과하는 것이 관련 산업의 발전에 크게 기여할 수 있음. 따라서 국내 법·제도 적용 연구와 동시에 국제표준 (ISO, IEC등) 제정 연구도 함께 추진하는 것이 국내 개발 기술의 국제화·협력화에 중요함.
| 8. (재난현장 소방구조 장비·시스템 기술) IT 기반의 재난·재해 대응 기술 개발은 구조적 시도되고 있으나 국가 주도의 연구개발(요소 및 핵심기술 개발 후 실용화를 위한 2단계 후속 과제)이 미비하므로 테스트베드 구축 등 적극적인 지원 확대 필요.
우주·항공·해양

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 61.6% 수준이며, 9.8년 격차를 보임

(국가별) 미국, EU를 일본, 중국이 추격하고 있으며, 한국은 후발주자의 위치에 있음

(기술별) 한국의 ‘지속가능한 해양공간 개발 기술’은 81%수준으로 우주·항공·해양 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 분야는 국가전략기술로 처음 반영된 ‘달 착륙·표면 탐사기술’. ‘첨단 항공 기스터빈 엔진·부품기술’임

기술수준 및 기술격차

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>우주·항공·해양</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>대형 다단연소 사이클 엔진기술</td>
<td>61.6</td>
<td>79.4</td>
<td>81.3</td>
</tr>
<tr>
<td>우주 관측·센싱기술</td>
<td>55.0</td>
<td>86.0</td>
<td>82.5</td>
</tr>
<tr>
<td>날 착륙·표면 탐사기술</td>
<td>65.0</td>
<td>80.0</td>
<td>81.0</td>
</tr>
<tr>
<td>첨단 항공 기스터빈 엔진·부품기술</td>
<td>45.0</td>
<td>80.0</td>
<td>66.5</td>
</tr>
<tr>
<td>우주환경 관측·감시·분석 기술</td>
<td>50.0</td>
<td>70.0</td>
<td>80.0</td>
</tr>
<tr>
<td>해양 자원탐사기술</td>
<td>60.0</td>
<td>75.0</td>
<td>80.0</td>
</tr>
<tr>
<td>지속가능한 해양공간 개발 기술</td>
<td>60.0</td>
<td>80.0</td>
<td>85.0</td>
</tr>
<tr>
<td>국한공간 인프라 기술</td>
<td>81.0</td>
<td>82.5</td>
<td>90.0</td>
</tr>
<tr>
<td>국한공간 인프라 기술</td>
<td>77.0</td>
<td>82.0</td>
<td>85.0</td>
</tr>
</tbody>
</table>

* 국가전략기술

(종합) ’20년 대비 비교 가능한 기술은 기술수준이 모두 증가하였으며, 특히 ‘우주환경 관측·감시·분석 기술’은 4.5%p 증가

기술수준 및 기술격차 종합

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>우주환경 관측·감시·분석 기술</td>
<td>55.0</td>
<td>60.0</td>
<td>4.5</td>
</tr>
<tr>
<td>지속가능한 해양공간 개발 기술</td>
<td>80.0</td>
<td>81.0</td>
<td>1.0</td>
</tr>
<tr>
<td>국한공간 인프라 기술</td>
<td>75.0</td>
<td>77.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* ’20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증가 비교

연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 ‘보통’ 수준이며 연구개발경향이 지속적으로 상승세

다만, 국가전략기술로 새로 반영된 ‘대형 다단연소 사이클 엔진기술’, ‘달 착륙·표면 탐사기술’의 기초연구 개발역량, ‘첨단 항공 기스터빈 엔진·부품기술’의 응용연구개발역량은 ‘미흡’으로 후발주자로서 역량 축적이 시급함
요약: '첨단 항공 가스터빈 엔진·부품기술' 및 해양분야 3개 기술의 연구개발경향은 '유지'세로 연구활성화를 지원이 시급함

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>우주·항공·해양</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>대형 디자인</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>우주 항공</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>달 착륙·표면 탐사기술</td>
<td>미흡</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>첨단 항공 가스터빈 엔진·부품기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>우주환경</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>해양 자원탐사기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지속가능한 해양공간 개발 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>국립공간 인프라 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>

* 국가전략기술

(논문·특허 분석결과) 한국의 논문·특허 증가율은 2-3위 수준이며, 논문의 질적수준은 5위권, 특허의 질적수준은 3-5위권이다. 미국, EU와의 격차는 매우 큰 편

(지표별) 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 접수율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>3.4%</td>
<td>77.0%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>34.8%</td>
<td>85.9%</td>
</tr>
<tr>
<td>일본</td>
<td>6.2%</td>
<td>-1.0%</td>
</tr>
<tr>
<td>EU</td>
<td>32.1%</td>
<td>51.9%</td>
</tr>
<tr>
<td>미국</td>
<td>23.6%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 접수율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>10.0%</td>
<td>59.7%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>52.1%</td>
<td>214.2%</td>
</tr>
<tr>
<td>일본</td>
<td>7.2%</td>
<td>76.6%</td>
</tr>
<tr>
<td>EU</td>
<td>12.5%</td>
<td>13.5%</td>
</tr>
<tr>
<td>미국</td>
<td>18.3%</td>
<td>43.6%</td>
</tr>
</tbody>
</table>
논문·의학자별 주요 5개국 수준

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구주제 다양도</td>
<td>특허 집유율</td>
</tr>
<tr>
<td>논문 잠재율</td>
<td>특허 집유율</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>축적 성과향상</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>축적 성과향상</td>
</tr>
<tr>
<td>중요논문 백율</td>
<td>축적 성과향상</td>
</tr>
<tr>
<td>연극점수</td>
<td>축적 성과향상</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

✔ (양과 징) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특히의 질은 미국이 우위에 있는 것으로 나타남

논문·특허의 양과 질 분석

<table>
<thead>
<tr>
<th>논문의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 집중도 지수</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
분야별(우주·항공·해양) 정책 제언

| 우주항공 관련 기술 | (우주항공 관계·기술) 우주항공 및 우주항공 연구개발의 선진국인 미국은 물론 유럽, 일본 등과 다양한 국제협력을 통해 인프라 개발 기술 확보와 자료의 교환으로 정확한 우주항공 예보 기능을 확립하는 것이 중요함
| | (우주항공 관계·기술) 미국의 발 빠른 상업적인 우주개발과 이와 SSA*/SDA**/STM***에 대한 적용을 범위마저에서 국가적인 전략지도 수정으로 대응할 필요가 있음
 * Space Situational Awareness(우주상황인식)
 ** Space Domain Awareness(우주영역인식)
 *** Space Traffic Management(우주교통관리)
| | (우주항공 관계·기술) 우주항공 관계를 위한 인프라가 해외 대비 부족한 상황이며 이에 대한 관측 장비·설비의 확대 및 관측 센서(위성탐재제) 등의 확대가 필요함

| 해양·극한지 관련 기술 | (지속가능한 해양공간 개발기술) 해양공간 개발 기술은 최종 수요자가 정부로서 민간의 영역이 아님. 정부에서 목표를 설정한 후 지속적인 연구비 확대가 필요함. 해양공간 개발 기술 분야에서 국제 수준의 엔지니어링 능력의 확대를 위해서는 정부의 투자가 요구됨
| | (지속가능한 해양공간 개발기술) 해양에서 이루어지는 기술로 실험실 수준에서 가능한 기술도 있지만 해양환경의 변화(침식, 갯벌 육성, 수질악화 등)와 재료의 성능변화 등은 현장 실증 조사연구가 필요. 이를 위해서는 현장에서의 실험적 연구를 통한 인프라 구축이 필요
| | (지속가능한 해양공간 개발기술) 해양공간 개발에는 기존의 연안토목 기술분야와 조선해양 기술의 협력이 필요함. 따라서 조선해양·연안공학 분야 협력연구 지원 확대를 제안
| | (극한공간 인프라 기술) 극한지에 대한 탐사, 계측 등에 대한 연구비는 일정 수준 유지하고 있음. 제2세상전후연성 건조로 인해 인프라에 비용이 투입되고 있지만, 다른 분야의 인프라 분야는 상대적으로 연구비 총소로 이어지고 있음. 극한공간 인프라의 균형적인 연구비 확대가 필요함
| | (극한공간 인프라 기술) 연구자들에게 국면환경 실험에 대한 교육과 훈련을 제공하고, 실험 장비 및 시설의 사용 방법에 대한 교육 프로그램을 개선하여 연구자들이 인프라 기술 연구에 효과적으로 참여할 수 있도록 하여야 함

※ 해당분야 기술 중 국가전략기술 관련 정책제언은 IV장 참조
4 국방

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 76.7% 수준이며, 4.3년 격차를 보임

✔ (국가별) 미국, EU를 중국, 일본, 한국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 4.3년, 3.4년의 격차를 보이고 있음

✔ (기술별) 한국의 ‘전군 다계층 네트워크 정보통합 및 사이버 대응기술’은 83.0%수준으로 국방 분야에서 가장 높은 기술수준을 보이고 있음

〈 기술수준 및 기술격차 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>국방</td>
<td>76.7</td>
<td>82.3</td>
<td>78.0</td>
</tr>
<tr>
<td>국방 스마트 플랫폼 및 무인화·지능화 기술</td>
<td>77.0</td>
<td>85.0</td>
<td>81.0</td>
</tr>
<tr>
<td>고해상 감시 정찰 및 장거리 정밀 타격 기술</td>
<td>70.0</td>
<td>75.0</td>
<td>70.0</td>
</tr>
<tr>
<td>전군 다계층 네트워크 정보통합 및 사이버 대응 기술</td>
<td>83.0</td>
<td>87.0</td>
<td>83.0</td>
</tr>
</tbody>
</table>

✔ (중감) 대부분의 기술이 ’20년 대비 기술수준이 증가하였으나, ‘국방 스마트 플랫폼 및 무인화·지능화 기술’은 다소 감소

〈 기술수준 및 기술격차 중감* 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>’20</td>
<td>’22</td>
<td>중감</td>
<td>’20</td>
</tr>
<tr>
<td>국방 스마트 플랫폼 및 무인화·지능화 기술</td>
<td>78.0</td>
<td>77.0</td>
<td>△1.0</td>
</tr>
<tr>
<td>고해상 감시 정찰 및 장거리 정밀 타격 기술</td>
<td>65.0</td>
<td>70.0</td>
<td>5.0</td>
</tr>
<tr>
<td>전군 다계층 네트워크 정보통합 및 사이버 대응 기술</td>
<td>82.0</td>
<td>83.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* ’20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 중감 비교

(연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

✔ 다만, ‘고해상 감시 정찰 및 장거리 정밀타격 기술’은 ’보통’ 수준으로 응용연구개발역량에 비해 상대적으로 취약
<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>국방</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>국방 스마트 플랫폼 및 무인화·지능화 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>
| 고해상 감시 정찰 및 정거리 정밀 타격 기술 | 보통 | 우수 | 우수 | 탃�월 | 탃�월 | 우수 | 우수 | 보통 | 우수 | 탃�월 | / | / | / | / | /
| 전군 다계층 네트워크 정보통합 및 사이버 대응 기술 | 우수 | 우수 | 우수 | 탃�월 | 탃�월 | 우수 | 우수 | 우수 | 탃�월 | 탃�월 | / | / | / | / | / |

■ (논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 4~5위권 수준으로 나타남

☑ (지표별) 한국의 논문·특허의 증가율은 중국에 이어 2위 수준이며, 전반적으로 미국이 논문, 특허 모두 질적 수준이 우위에 있음

〈 논문분석 지표 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 점유율</td>
<td>논문 증가율</td>
<td>논문 영향력</td>
</tr>
<tr>
<td>한국</td>
<td>3.1%</td>
<td>32.8%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>40.9%</td>
<td>45.0%</td>
</tr>
<tr>
<td>일본</td>
<td>1.2%</td>
<td>-5.5%</td>
</tr>
<tr>
<td>EU</td>
<td>27.6%</td>
<td>19.7%</td>
</tr>
<tr>
<td>미국</td>
<td>27.2%</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

〈 특허분석 지표 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허 점유율</td>
<td>특허 증가율</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>한국</td>
<td>10.4%</td>
<td>40.2%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>47.7%</td>
<td>198.7%</td>
</tr>
<tr>
<td>일본</td>
<td>7.3%</td>
<td>19.0%</td>
</tr>
<tr>
<td>EU</td>
<td>12.0%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>미국</td>
<td>22.6%</td>
<td>8.7%</td>
</tr>
</tbody>
</table>
논문의 양(집중도)과 질(영향력)

<table>
<thead>
<tr>
<th>논문의 양(집중도)</th>
<th>특허의 양(집중도)</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 전용자수</td>
<td>특허 전용자수</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

※ 한국 □ 중국 □ 일본 □ EU □ 미국

☑ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 미국, EU가, 특히의 질은 미국이 우위에 있는 것으로 나타남

논문·특허지표별 주요 5개국 수준

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 정규문</td>
<td>특허 정규문</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>중요논문 비율</td>
<td>중요특허 비율</td>
</tr>
</tbody>
</table>

※ 한국 □ 중국 □ 일본 □ EU □ 미국

☑ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 미국, EU가, 특히의 질은 미국이 우위에 있는 것으로 나타남

※ 한국 □ 중국 □ 일본 □ EU □ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
분야별(국방) 정책 제언

<table>
<thead>
<tr>
<th>국방 관련 기술</th>
<th>콘텐츠</th>
</tr>
</thead>
<tbody>
<tr>
<td>(국방 스마트 플랫폼 및 무인화·지능화 기술) 국내 국방 R&D를 주도하는 국방과학연구소를 비롯하여 산업계, 학계, 정출문 등의 연구개발 성과가 연계될 수 있도록 협력이 필요함</td>
<td></td>
</tr>
<tr>
<td>(국방 스마트 플랫폼 및 무인화·지능화 기술) 최근 미국의 스마트 플랫폼 확득 프로세스가 먼저 도입하고 문제점을 도출하여 다시 보완하는 방향으로 전환되었음. 이처럼 우리나라도 스마트 플랫폼을 활용하는 데 있어 미국과 유사하게 접근을 한다면, 이와 관련된 인프라 구축이 되어야 하며 법·제도도 함께 개선되어야 한다고 판단됨</td>
<td></td>
</tr>
<tr>
<td>(고해상 감시 장치 및 장거리 정밀 탄력 기술) 전략물자로 기술이전이 쉽지 않은 국방청에서 국방공동과학단을 통해 연구소 등과 원전기술 분야 협력 촉진이 필요함</td>
<td></td>
</tr>
<tr>
<td>(고해상 감시 장치 및 장거리 정밀 탄력 기술) 세계1류가 되면 될수록, 점점 더 확실한 안정성을 보유한 부품·장치·기술을 사용하지 못하게 됨(정경국에서 신기술 제공을 공림). 선도 기술뿐 아니라도, 후발 추격형이라도 부품·장치·기술을 개발해야 할 때, 촉진 및 환경설정을 위한 인프라가 필요함</td>
<td></td>
</tr>
<tr>
<td>(단군 다계층 네트워크 정보통합 및 사이버 대응 기술) 현재 탐지·타격 체계 기술개발 대비 연구비 비중이 낮은 상황으로 선진 모자이크전 준비·수행을 위해 연구비 비중 확대 필요함</td>
<td></td>
</tr>
<tr>
<td>(단군 다계층 네트워크 정보통합 및 사이버 대응 기술) 인공지능, 빅데이터, 클라우드 등 지능정보 인력이 계속 확대 양성되고 있으나, 해당 고급인력의 국방 분야 지원은 부족한 상황임. 이와 관련된 정책적 지원책이 필요함</td>
<td></td>
</tr>
<tr>
<td>(단군 다계층 네트워크 정보통합 및 사이버 대응 기술) 선진국과 공동 기술연구에 대학이나 연구소 인력을 참여시키기 위한 인력 확충에 노력 필요. 업체를 통한 공동 기술연구는 해당 국가 등에서 일부 제한 요소가 있을 수 있으므로 대학이나 연구소를 통해 공동기술연구를 수행하고 이를 바탕으로 인력 양성 및 유지가 효과적일 것으로 보임</td>
<td></td>
</tr>
</tbody>
</table>
5 기계·제조

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 82.1% 수준이며, 2.8년 격차를 보임

✔ (국가별) 미국, EU를 일본, 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.8년, 3.3년의 격차를 보이고 있음

✔ (기술별) 한국의 ‘선박 전생애주기 통합형 기반기술’은 87.5%수준으로 기계·제조 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 분야는 ‘3D 프린팅 장비·소재기술’임

< 기술수준 및 기술격차 >

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계·제조</td>
<td>82.1 78.9 98.8 98.8 1000 2.8 3.3 1.5 0.3 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>인간·로봇 상호작용기술</td>
<td>85.0 84.0 92.0 95.0 1000 2.0 2.5 1.0 1.0 0.0</td>
<td>추격 추격 선도 선도 최고</td>
<td></td>
</tr>
<tr>
<td>로봇 정밀제어·구동 부품·SW기술</td>
<td>80.0 80.0 1000 95.0 1000 2.5 3.0 0.0 0.5 0.0</td>
<td>추격 추격 최고 선도 최고</td>
<td></td>
</tr>
<tr>
<td>로봇 자율이동기술</td>
<td>80.0 86.5 84.5 95.0 1000 2.3 2.0 1.5 1.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>고난도 자율조작기술</td>
<td>85.0 79.0 90.0 1000 1000 2.0 3.0 1.0 0.0 0.0</td>
<td>추격 추격 추격 최고 최고</td>
<td></td>
</tr>
<tr>
<td>가상 제조기술</td>
<td>80.0 85.0 80.0 1000 1000 2.5 2.0 2.0 0.0 0.0</td>
<td>추격 추격 추격 최고 최고</td>
<td></td>
</tr>
<tr>
<td>재난구조 및 극한탈사 로봇기술</td>
<td>79.0 80.0 90.0 90.0 1000 3.3 3.0 1.5 1.8 0.0</td>
<td>추격 추격 선도 선도 최고</td>
<td></td>
</tr>
<tr>
<td>고효율·초정밀 생산시스템 기술</td>
<td>85.0 71.5 1000 1000 95.0 3.0 5.0 0.0 0.0 1.0</td>
<td>추격 후발 최고 최고 선도</td>
<td></td>
</tr>
<tr>
<td>3D 프린팅 장비·소재 기술</td>
<td>70.0 71.0 80.0 99.0 1000 4.0 3.0 3.0 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>3D 프린팅 소프트웨어 활용 기술</td>
<td>77.0 80.0 80.5 98.0 1000 2.8 2.5 2.3 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>선박 전생애주기 통합형 기반기술</td>
<td>87.5 70.0 80.0 1000 1000 2.0 4.0 2.5 0.0 0.0</td>
<td>추격 후발 추격 최고 최고</td>
<td></td>
</tr>
<tr>
<td>친환경·스마트 선박 기술</td>
<td>85.0 75.0 90.0 1000 87.5 2.5 4.3 1.5 0.0 2.0</td>
<td>추격 후발 추격 최고 추격</td>
<td></td>
</tr>
<tr>
<td>해양플랫폼 실용화 기술</td>
<td>80.0 70.0 80.0 95.0 1000 5.0 7.0 3.0 1.0 0.0</td>
<td>추격 후발 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>친환경·스마트 플랜트 기반 기술</td>
<td>80.0 80.0 80.0 1000 1000 5.0 5.0 3.0 0.0 0.0</td>
<td>추격 추격 추격 최고 최고</td>
<td></td>
</tr>
</tbody>
</table>

* 국가전략기술
중강 대부분의 기술이 '20년 대비 기술수준이 증가하였으며, '3D 프린팅 장비·소재 기술'과 '3D 프린팅 소프트웨어·활용 기술'은 후반 그룹에서 추격 그룹으로 상승

〈 기술수준 및 기술격차 증강 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(%)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>재난구조 및 극한황사 로봇기술</td>
<td>80.0 79.0</td>
<td>△3.0 3.3 0.3</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>고효율·초정밀 생산시스템 기술</td>
<td>80.0 85.0</td>
<td>3.5 3.0 △0.5</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>3D 프린팅 장비·소재 기술</td>
<td>67.5 70.0</td>
<td>2.5 5.5 △0.7</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>3D 프린팅 소프트웨어·활용 기술</td>
<td>70.0 77.0</td>
<td>7.0 2.8 △0.0</td>
<td>후반 추격</td>
</tr>
<tr>
<td>선박 전생애주기 통합형 기반기술</td>
<td>85.0 87.5</td>
<td>2.5 1.8 2.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>친환경·스마트 선박 기술</td>
<td>81.0 85.0</td>
<td>4.0 3.0 2.5 △0.5</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>해양플랜트 활용기술</td>
<td>75.0 80.0</td>
<td>5.0 6.0 △1.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>친환경·스마트 플랜트 기반 기술</td>
<td>82.0 80.0 △2.0</td>
<td>4.0 5.0 1.0</td>
<td>추격 추격 -</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 중강 비교

연구개발역량·경향 한국은 응용연구개발역량은 우수한 수준이나, 기초연구개발역량이 보통수준이며 연구개발경향은 상승세

기초연구개발역량은 13개 기술 중 7개 기술이 '보통' 수준으로 응용연구개발역량에 비해 상대적으로 취약

〈 연구개발역량 및 연구활동경향 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계·제조</td>
<td>보통 보통 우수 탁월 탁월</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>인건·로봇 상호작용기술</td>
<td>보통 보통 우수 우수</td>
<td>보통 보통 우수 우수</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>로봇·정밀제어·구동 부품·SW기술</td>
<td>보통 우수 탁월</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>로봇 자율이동기술</td>
<td>보통 우수 우수 탁월 탁월</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>고난도 자율조작기술</td>
<td>우수 보통 우수 탁월</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>기체 제조기술</td>
<td>보통 보통 탁월 탁월</td>
<td>우수 우수 보통 보통 탁월</td>
<td>/ / → / /</td>
</tr>
<tr>
<td>재난구조 및 극한황사 로봇기술</td>
<td>우수 우수 탁월 우수</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / / /</td>
</tr>
<tr>
<td>고효율·초정밀 생산시스템 기술</td>
<td>우수 보통</td>
<td>탁월 탁월 탁월 탁월</td>
<td>/ → / / /</td>
</tr>
<tr>
<td>3D 프린팅 장비·소재 기술</td>
<td>보통 보통</td>
<td>탁월</td>
<td>보통 우수 우수 탁월 탁월</td>
</tr>
<tr>
<td>3D 프린팅 소프트웨어·활용 기술</td>
<td>보통 우수</td>
<td>탁월</td>
<td>우수 우수 우수 우수 탁월</td>
</tr>
<tr>
<td>선박 전생애주기 통합형 기반기술</td>
<td>우수 보통</td>
<td>탁월 탁월 우수</td>
<td>우수 우수 우수 우수 탁월</td>
</tr>
<tr>
<td>친환경·스마트 선박 기술</td>
<td>우수 보통</td>
<td>탁월 우수 우수</td>
<td>우수 우수 우수 우수 탁월</td>
</tr>
<tr>
<td>해양플랜트 활용기술</td>
<td>보통 우수</td>
<td>탁월</td>
<td>보통 우수 우수 우수 우수 탁월</td>
</tr>
<tr>
<td>친환경·스마트 플랜트 기반 기술</td>
<td>우수 보통</td>
<td>탁월</td>
<td>보통 우수 우수 탁월</td>
</tr>
</tbody>
</table>

* 국가전략기술
논문·특허 분석결과 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 3~5위권 수준으로 나타남

지표별 한국의 논문·특허의 증가율은 중국에 이어 2위 수준이며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음

논문분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>5.9%</td>
<td>308.7%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>32.6%</td>
<td>396.0%</td>
</tr>
<tr>
<td>일본</td>
<td>8.2%</td>
<td>94.3%</td>
</tr>
<tr>
<td>EU</td>
<td>34.5%</td>
<td>210.1%</td>
</tr>
<tr>
<td>미국</td>
<td>18.8%</td>
<td>126.0%</td>
</tr>
</tbody>
</table>

특허분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>13.9%</td>
<td>251.8%</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>57.7%</td>
<td>418.6%</td>
</tr>
<tr>
<td>일본</td>
<td>8.0%</td>
<td>61.3%</td>
</tr>
<tr>
<td>EU</td>
<td>8.0%</td>
<td>108.0%</td>
</tr>
<tr>
<td>미국</td>
<td>12.4%</td>
<td>82.8%</td>
</tr>
</tbody>
</table>

논문·특허지표별 주요 5개국 수준

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
</table>

※ 한국 □ 중국 □ 일본 □ EU □ 미국
(영과 질) 논문의 영향력 및 집중도 측면에서 논문과 특허의 질은 전반적으로 미국이 우위에 있는 것으로 나타남

〈 논문·특허의 양과 질 분석 〉

<table>
<thead>
<tr>
<th>논문의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 □ 일본 ▇ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
분야별(기계·제조) 정책 제언

<table>
<thead>
<tr>
<th>첨단 로봇 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(재난구조 및 극한타당 로봇기술) 극지 탐사의 해양 및 극지 지역 접근 자체가 큰 비용과 도전이 요구되는 바, 인근 국가 간 협력 필요. 탐사 기술 및 로봇 플랫폼 관련 기술개발 협력 필요</td>
</tr>
<tr>
<td>(재난구조 및 극한타당 로봇기술) 기 개발된 기술의 검증 및 고도화를 위한 제도적 개선 필요. 재난 및 극한 탐사 분야는 한정 적용이 매우 보수적으로 접근되기 때문에 이를 보완하기 위한 법 및 제도 개선 필요. 적극 피해 최소화의 관점에서 신기술 적용 기회 확대 필요</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제조 기반 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(고효율·초정밀 생산시스템 기술) 대학과 유관 연구기관을 중심으로 AI, Digital Twin 기술이 활발하게 연구되고 있으며 이들의 협업을 통해 생산시스템의 향후 적용이 가능한 실증적 연구. 사례가 필요하여 특정 대상의 구체화를 통해 고효율 생산시스템의 브랜드 가치를 제고할 필요</td>
</tr>
<tr>
<td>(고효율·초정밀 생산시스템 기술) 국제 표준 및 기기와 환경도 국가이나 대국의 이해에 맞추어 진행되며, 이에 대해 한국은 공공, 각국의 기술을 국가 차원에 진행해야 함</td>
</tr>
<tr>
<td>(고효율·초정밀 생산시스템 기술) 인력양성 및 연구 기반 확대에 대한 정책 차원에서도 지속적인 지원이 이루어지고 있는 것으로 판단하고 있음. 디지털 전환에 대한 인력을 실증적 적용 쪽으로 연계 육성할 필요가 있음</td>
</tr>
<tr>
<td>(3D 프린팅 장비·소재 기술) 국내 3D 프린팅 기술은 응용에 접근되어 있으며, 원전기술 확보를 위한 국제도 연 연구 아이템 도출이 필요함</td>
</tr>
<tr>
<td>(3D 프린팅 장비·소재 기술) 산업계에서는 전통적 산업기술로 제작된 제품에 대해서는 품질 기준을 가지고 있으나 적절장비에 대해서는 품질이나 시장·평가 기준을 갖추지 않고 있어 산업계에서 적절장비 기술을 적용하여 효율을 높이거나 비용을 절감하여도 실제로 적용되지 못하고 있는 상황임</td>
</tr>
<tr>
<td>(3D 프린팅 장비·소재 기술) 적절장비 기술은 그 기술적 효율성과 가능성이 상대적으로, 이를 제대로 활용할 수 있는 전문인력이 없는 제도로 된 활용이 불가능함. 기술감을 제공하는 각슈 경쟁 변수들은 이해하고 해당하는 응용사례에 적합한 육성할 수 있는 인력의 양성이 요구됨</td>
</tr>
<tr>
<td>(3D 프린팅 소프트웨어·활용 기술) 항공, 우주, 반도체 관련 국제 공동 연구개발을 통해 신기술, 신공법의 기술 축적이 필요함</td>
</tr>
<tr>
<td>(3D 프린팅 소프트웨어·활용 기술) 3D 프린팅 인장성 이슈 등장으로 인해 사회적 이슈가 규제에 초점이 쏠리고 있음. 반면 세계시장은 장비 기술에서 SW 기술로 초점이 이동하는 상황에서, 바르게 인장성 이슈에 대한 법·제도의 해결이 시급함</td>
</tr>
<tr>
<td>(3D 프린팅 소프트웨어·활용 기술) 성능 극대화를 위한 제품 디자인 관련 DFAM(적정조직특화설계) 인력양성이 시급함</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>모산 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(선박 전생애기 기법개발) IACS UR-E26,E27 등 국제규약 제본 개발 적용에 한국의 조선소 의견이 확대되어 명시될 수 있도록 민·관·협의 협동 노력이 필요함. 선박용 소형차원으로 기술개발 협력 기속화와 함께 국제규정 적정 결정을 제도·기기추진계 기술 개발 협력 추진 등 필요</td>
</tr>
<tr>
<td>(선박 전생애기 기법개발) 범제도 개선과 더불어 선박 전생애기 동안 다양한 데이터를 수집, 모니터링, 분석 가능한 인프라의 확보가 우선적으로 요구됨</td>
</tr>
<tr>
<td>(선강·스마트 선박 기술) 해양 선박 기술과의 공동 연구개발(JDP) 발굴 및 정부 지원 필요</td>
</tr>
<tr>
<td>(선강·스마트 선박 기술) 자율운항선박을 위한 테스트베드 및 생태계 구축을 위한 인프라 구축 필요</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>플랜트 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(해양플랜트 실용화 기술) 해양플랜트 실용화 기술은 전 세계의 경우, 부유식의 경우 부유체의 개발·설계, 계류장치의 개발·설계, 테크나 태워의 개발·설계 등의 주요 기술이 있으며, 고정식의 경우 해양플랜트 구조물 및 설계 기술 개발 필요는 국내외의 기업들의 개발로 기술이 발전될 수밖에 없는 구조이며, 여기에 더하여 수소까지 고려한다면 국내외 유관 기업들의 협력은 더욱 중요해짐</td>
</tr>
<tr>
<td>(해양플랜트 실용화 기술효여) 지난 10여 년 동안 해양플랜트 관련 인력양성 및 유지가 지속적인 감소 추세에 있으며, EPC(Engineering, Procurement, Construction) 방식 이후 설치, 엔지니어링 등 서비스 분야에 대해 지속적인 인력양성 정책 및 추진 필요</td>
</tr>
<tr>
<td>(친환경·스마트 플랜트 기반 기술) EU의 경우에는 FIT for 55, 국방산업 등 강제적 법적 조치 등으로 친환경 스마트 플랜트들이 도입될 과정을 만들어주고 있으며, 미국의 경우 IRA를 통해 광범위한 지원을 하고 있음</td>
</tr>
<tr>
<td>(친환경·스마트 플랜트 기반 기술) 실용화도의 친환경스마트 플랜트에 적용하기 위해서는 실증규모 플랜트의 데이터 수집, 분석, 적용 등에 필요한 연구비 확대가 요구됨</td>
</tr>
</tbody>
</table>

※ 해당분야 기술 중 국가전략기술 관련 정책제언은 IV장 참조
6 소재·나노

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 83.3% 수준이며, 2.6년 격차를 보임

(국가별) 미국, EU, 일본을 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.6년, 3.0년의 격차를 보이고 있음

(기술별) 한국의 '고성능 금속소재 기술'은 88%수준으로 소재·나노 분야에서 가장 높은 기술수준을 보이고 있음

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>소재·나노</td>
<td>83.3</td>
<td>80.5</td>
<td>96.1</td>
</tr>
<tr>
<td>기능성 유기소재 기술</td>
<td>80.0</td>
<td>80.0</td>
<td>98.0</td>
</tr>
<tr>
<td>친환경 바이오소재 기술</td>
<td>85.0</td>
<td>83.0</td>
<td>90.0</td>
</tr>
<tr>
<td>고성능 금속소재 기술</td>
<td>88.0</td>
<td>83.5</td>
<td>95.0</td>
</tr>
<tr>
<td>나노구조제어 세라믹·탄소 소재 기술</td>
<td>83.5</td>
<td>81.0</td>
<td>97.5</td>
</tr>
<tr>
<td>다기능 용·복합소재 기술</td>
<td>80.0</td>
<td>75.0</td>
<td>1000</td>
</tr>
</tbody>
</table>

(증감) 대부분의 기술이 '20년 대비 기술수준이 증가하였으나, '기능성 유기소재 기술'은 다소 감소

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'20</td>
<td>'22</td>
<td>증감</td>
</tr>
<tr>
<td>기능성 유기소재 기술</td>
<td>82.0</td>
<td>80.0</td>
<td>△2.0</td>
</tr>
<tr>
<td>친환경 바이오소재 기술</td>
<td>85.0</td>
<td>85.0</td>
<td>0.0</td>
</tr>
<tr>
<td>고성능 금속소재 기술</td>
<td>82.0</td>
<td>88.0</td>
<td>6.0</td>
</tr>
<tr>
<td>나노구조제어 세라믹·탄소 소재 기술</td>
<td>80.0</td>
<td>83.5</td>
<td>3.5</td>
</tr>
<tr>
<td>다기능 용·복합소재 기술</td>
<td>75.0</td>
<td>80.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

(연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

다만, 기초연구개발역량은 5개 기술 중 3개 기술이 '보통' 수준으로 응용연구개발역량에 비해 상대적으로 취약
연구개발역량 및 연구활동경향

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>소재·나노</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>기능성 유기소재 기술</td>
<td>우수</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>친환경 바이오소재 기술</td>
<td>우수</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>고성능 금속소재 기술</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>나노구조제어 세라믹·탄소 소재 기술</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>다기능 용·복합소재 기술</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
</tbody>
</table>

(논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 논문의 경우 2-5위권, 특허는 4-5위권 수준으로 나타남.

(지표별) 한국의 논문·특허의 증가율은 중국에 이어 2위 수준이며, 전반적으로 논문의 질적 수준은 미국, EU 중국이, 특허의 질적 수준은 미국, EU, 일본, 중국이 고르게 우위에 있음

논문분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>4.4%</td>
<td>38.7%</td>
<td>24.3</td>
<td>4.6%</td>
<td>0.77</td>
<td>41.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>미국</td>
<td>43.0%</td>
<td>81.0%</td>
</tr>
<tr>
<td>중국</td>
<td>5.0%</td>
<td>-7.4%</td>
<td>15.1</td>
<td>3.3%</td>
<td>0.80</td>
<td>33.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>33.4%</td>
<td>28.6%</td>
<td>23.5</td>
<td>33.7%</td>
<td>0.96</td>
<td>94.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>14.3%</td>
<td>1.5%</td>
<td>37.8</td>
<td>16.3%</td>
<td>0.89</td>
<td>104.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

특허분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>중요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 청구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>6.8%</td>
<td>27.0%</td>
<td>3.3</td>
<td>9.8%</td>
<td>259.0%</td>
<td>8.7%</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>일본</td>
<td>63.0%</td>
<td>86.0%</td>
<td>3.8</td>
</tr>
<tr>
<td>중국</td>
<td>13.8%</td>
<td>-16.3%</td>
<td>3.3</td>
<td>23.8%</td>
<td>351.4%</td>
<td>33.4%</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>7.5%</td>
<td>-18.9%</td>
<td>4.5</td>
<td>20.3%</td>
<td>820.6%</td>
<td>26.9%</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>미국</td>
<td>8.9%</td>
<td>-4.2%</td>
<td>7.1</td>
<td>21.7%</td>
<td>638.6%</td>
<td>24.9%</td>
<td>20.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
논문·특허지표별 주요 5개국 수준

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 잭유율</td>
<td>특허 잭유율</td>
</tr>
<tr>
<td>논문 증가율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>중요도평가</td>
<td>중요도평가</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

✔ (양과 질) 논문의 영향력 및 집중도 측면에서 전반적으로 논문·특허의 양은 중국이, 논문·특허의 질은 미국이 우위에 있는 것으로 나타남

논문의 양(집중도)과 질(영향력)

특허의 양(집중도)과 질(영향력)

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
<table>
<thead>
<tr>
<th>분야별(소재·나노) 정책 제언</th>
</tr>
</thead>
<tbody>
<tr>
<td>유가·바이오 소재 관련 기술</td>
</tr>
<tr>
<td>(1) 기능성 유기소재 기술: 대부분의 소재가 상용화에서 인증 등의 단계에서 정책이 있어 이를 해결할 수 있는 기업과 협력이 필수적. 이러한 인증에서 기업의 손실비용을 보전하는 등의 해결책이 필요함</td>
</tr>
<tr>
<td>(2) 기능성 유기소재 기술: 미국, 일본, 유럽과의 협력이 필요하지만 일본과의 협력에서는 전략적 접근이 필요. 일본 입장에서는 소재 분야에서 한국과의 협력을 통해 한국의 경쟁력을 강화한다면 일본의 경쟁력을 약화될 수밖에 없음. 서로 win-win 할 수 있는 전략 도출 및 접근이 필요함</td>
</tr>
<tr>
<td>(3) 기능성 유기소재 기술: 소재 분야는 최종 제품 (반도체, 디스플레이, 이차전지 등)에 곡 필요한 분야임. 국가전략기술에 큰 예산을 투입할 때, 원료·소재·부품·모듈·완제품으로 이어지는 Supply Chain을 면밀히 분석하여 해결의존도가 높은 분야나 Critical Tech를 도출하여 지원하는 것이 중요함</td>
</tr>
<tr>
<td>(4) 기능성 유기소재 기술: 천연생 바이오소재 전무기 기술(원료·소재·제품·인증·탄소순환) 역량 강화를 위해서는 상품을 위한 테스트베드 인프라가 반드시 필요함. 바이오 및 화학 기술의 복잡한 영역을 필요한 천연생 바이오소재 산업에서 산업체가 해당 인프라를 구축하기에는 전문성 부족, 과도한 인프라 투자 문제 등이 있음</td>
</tr>
</tbody>
</table>

| **금속 관련 기술** |
| (1) 친환경 바이오소재 기술: 천연생 바이오소재 산업은 원료·소재·제품·인증에 이어 최근에는 탄소순환 이슈까지 포함해야 함. 즉, 기존 제품의 탄소순환 기술의 개발뿐만 아니라, 탄소순환을 고려한 원료·소재·제품이 설계되어야 함. 이를 위해 유럽과 중국 간 협력 사업인 MIX-UP이 진행되고 있으며, 미국은 BOTTLE 사업을 진행하고 있음. 한국도 이와 유사한 기술강경력 확보가 필요함 |

| **세라믹·탄소·나노소재 관련 기술** |
| (1) 나노구조제어 세라믹·탄소 소재 기술: 나노카분 관련 네트워크를 형성할 수 있는 시스템형 과제 (교류 협력, value chain 정보)의 도입이 필요함 |
| (2) 나노구조제어 세라믹·탄소 소재 기술: 미국, 중국, 유럽, 일본과 소재 및 구조제 관련 나노 응용 기술 개발, 차세대 멀티리, 이차전지, 소라스 등 활발한 연구 협력 추진 필요 |
| (3) 나노구조제어 세라믹·탄소 소재 기술: 나노융합2020 사업 추진 이후에 대규모 투자가 미흡한 상황으로 나노구조제어 및 소재 기술에 대한 정부의 연구비 투자가 필요. 이를 바탕으로 나노소재 상용화 확대 |

| **융복합 소재 관련 기술** |
| (1) 유기·융복합소재 기술: 나노소재 및 우주항공소재에 대한 규제 완화와 협력 관련 법규 완화 필요 |
| (2) 유기·융복합소재 기술: 국내 융복합 소재가 실제로 적용되어 산업화 및 시장 규모로 성장하는 것이 필요하며, 이를 위해서는 국내에서 적용할 수 있는 융합제 제조 인증 관련 법·제도 마련이 필요함 |
농림수산·식품

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(EU) 대비 82.5% 수준이며, 3.4년 격차를 보임

- (국가별) EU, 미국을 일본, 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 3.4년, 4.0년의 격차를 보이고 있음

- (기술별) 한국의 `식품안전성 평가·향상기술`은 87.5%수준으로 농림수산·식품 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 분야는 `스마트팜`기술임

(기술수준 및 기술격차)

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산·식품</td>
<td>82.5 79.2 88.4 1000 99.5</td>
<td>3.4 4.0 2.3 0.0 0.0</td>
<td>추격 추격 추격 최고 선도</td>
</tr>
<tr>
<td>저항성 및 고기능성 품종개발 기술</td>
<td>81.0 85.0 85.0 93.0 1000</td>
<td>5.0 3.8 3.8 1.8 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>친환경 맞춤형 신재배기술</td>
<td>81.0 75.0 90.0 1000 92.0</td>
<td>3.0 4.5 2.0 0.0 1.0</td>
<td>추격 후발 선도 최고 선도</td>
</tr>
<tr>
<td>스마트팜 기술</td>
<td>77.5 80.0 80.0 1000 95.0</td>
<td>4.0 3.8 2.5 0.0 1.0</td>
<td>추격 추격 추격 최고 선도</td>
</tr>
<tr>
<td>유동유전자 및 유전자원 개발 기술</td>
<td>80.0 90.0 88.0 95.0 1000</td>
<td>5.0 2.0 3.0 1.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>친환경 사양기술</td>
<td>79.0 65.0 86.5 1000 95.0</td>
<td>3.5 5.3 2.0 0.0 0.8</td>
<td>추격 후발 선도 최고 선도</td>
</tr>
<tr>
<td>동물 질병 통제 기술</td>
<td>80.0 77.5 85.0 97.5 1000</td>
<td>3.5 5.0 3.3 0.0 0.0</td>
<td>추격 후발 추격 선도 최고</td>
</tr>
<tr>
<td>ICT 기반 수산양식 및 수산자원 개발 기술</td>
<td>79.5 74.5 80.0 1000 91.0</td>
<td>4.3 5.5 4.8 0.0 1.8</td>
<td>추격 추격 추격 최고 선도</td>
</tr>
<tr>
<td>식품안전성 평가·향상 기술</td>
<td>87.5 77.5 90.0 95.0 1000</td>
<td>2.3 4.0 1.8 0.8 0.0</td>
<td>추격 후발 선도 선도 최고</td>
</tr>
<tr>
<td>식품가치창출기술</td>
<td>78.0 70.0 91.0 96.5 1000</td>
<td>4.0 6.5 2.3 0.8 0.0</td>
<td>추격 후발 추격 선도 최고</td>
</tr>
</tbody>
</table>

(증감) 대부분의 기술이 '20년 대비 기술수준이 증가하였으나, `식품가치창출기술`은 다소 감소

(기술수준 및 기술격차 증감)

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>저항성 및 고기능성 품종개발 기술</td>
<td>80.0 81.0</td>
<td>1.0 5.0 5.0 0.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>친환경 맞춤형 신재배기술</td>
<td>80.0 81.0</td>
<td>1.0 3.3 3.0 △0.3</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>스마트팜 기술</td>
<td>70.0 77.5</td>
<td>7.5 4.0 4.0 0.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>유동유전자 및 유전자원 개발 기술</td>
<td>80.0 80.0</td>
<td>0.0 4.3 5.0 0.7</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>친환경 사양기술</td>
<td>76.5 79.0</td>
<td>2.5 5.5 3.5 △2.0</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>동물 질병 통제 기술</td>
<td>80.0 80.0</td>
<td>0.0 4.0 3.5 △0.5</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>ICT 기반 수산양식 및 수산자원 개발 기술</td>
<td>75.0 79.5</td>
<td>4.5 4.5 4.3 △0.3</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>식품안전성 평가·향상 기술</td>
<td>85.0 87.5</td>
<td>2.5 3.0 2.3 △0.8</td>
<td>추격 추격 -</td>
</tr>
<tr>
<td>식품가치창출기술</td>
<td>80.0 78.0 △2.0</td>
<td>3.0 4.0 1.0</td>
<td>추격 추격 -</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술의 증감 비교*
(연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

하지만, 기초연구개발역량은 9개 기술 중 4개 기술이 ‘보통’ 수준으로 응용연구개발역량에 비해 상대적으로

취약

(연구개발역량 및 연구활동경향)

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>조선일본</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>농림수산·식품</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>저항성 및 고기능성 품종개발 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>친환경 맞춤형 신재생기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>스마트폰 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>유응용전자 및 유전자원 개발 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>친환경 사양기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>동물 질병 통제 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>ICT 기반 수산영양 및 수산자원 개발 기술</td>
<td>우수</td>
<td>우수</td>
<td>탑실</td>
</tr>
<tr>
<td>식품안전성 평가·향상 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>식품가치창출기술</td>
<td>우수</td>
<td>우수</td>
<td>탑실</td>
</tr>
</tbody>
</table>

(논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 4~5위권 수준으로 나타남

(지표별) 한국의 논문의 질적수준은 5위권이나, 특허 수준은 4위권에 해당하며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음

(논문분석 지표 결과)

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문</td>
<td>논문 분야별</td>
<td>논문 영향력</td>
</tr>
<tr>
<td>한국</td>
<td>2.7%</td>
<td>81.5%</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>19.4%</td>
<td>119.4%</td>
</tr>
<tr>
<td>일본</td>
<td>4.2%</td>
<td>29.4%</td>
</tr>
<tr>
<td>EU</td>
<td>51.1%</td>
<td>51.2%</td>
</tr>
<tr>
<td>미국</td>
<td>22.6%</td>
<td>37.9%</td>
</tr>
</tbody>
</table>

(특허분석 지표 결과)

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허</td>
<td>특허 분야별</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>한국</td>
<td>6.4%</td>
<td>32.9%</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>81.9%</td>
<td>103.7%</td>
</tr>
<tr>
<td>일본</td>
<td>3.9%</td>
<td>16.4%</td>
</tr>
<tr>
<td>EU</td>
<td>3.1%</td>
<td>21.5%</td>
</tr>
<tr>
<td>미국</td>
<td>4.8%</td>
<td>27.9%</td>
</tr>
</tbody>
</table>
<논문·특허지표별 주요 5개국 수준>

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구주제 다양도</td>
<td>특허 영구점</td>
</tr>
<tr>
<td>중요성 비율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>논문 영향력</td>
<td>특허 영향력</td>
</tr>
<tr>
<td>히트맵</td>
<td>특허 영향력</td>
</tr>
</tbody>
</table>

※ 한국 제한, 중국 제한, 일본 제한, EU 제한, 미국 제한

✔ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특허의 질은 미국이 우위에 있는 것으로 나타남

〈논문·특허의 양과 질 분석〉

| 논문의 양(집중도)과 질(영향력) |
|---|---|
| 논문 집중도 지수 |
| 특허의 양(집중도)과 질(영향력) |
| 특허 집중도 지수 |

※ 한국 제한, 중국 제한, 일본 제한, EU 제한, 미국 제한, 원 크기: 각 국가의 기술별 논문, 특허 전체 건수
분야별(농림수산·식품) 정책 제언

<table>
<thead>
<tr>
<th>농축수산 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(저항성 및 고기능성 풍품개발 기술) 신용증기술과 GMO(LMO) 관련 법령이 첨단 생명공학 기술을 수용하는 방향으로 개선되어야 함, 관련 연구개발 법령도 개선되어야 함</td>
</tr>
<tr>
<td>(저항성 및 고기능성 풍품개발 기술) 정밀표현형 평가기 위한 기반시설 구축 및 활용 확대 방안 모색</td>
</tr>
<tr>
<td>(친환경 맞춤형 신재생기술) 저투립농업의 확산을 위한 보상체계 시행으로 농업생산의 다원적 기능 강화 필요</td>
</tr>
<tr>
<td>(친환경 맞춤형 신재생기술) 친환경 신재생기술 개발을 위한 기존 연구시설(스마트팜 실증센터 등)과 연구기반 공동 활용과 현장 실증을 위한 장소 제공이 필요</td>
</tr>
<tr>
<td>(스마트팜 기술) 요소 기술별 국제협력의 확대 및 해외 기업자 매핑 작업 지원 국제 공동 기술개발 과제 지원이 필요함</td>
</tr>
<tr>
<td>(스마트팜 기술) 소프트웨어와 현장 장비에 대한 기술이 정립되어도 농가를 관리하기 위한 컨설팅 및 품종별 농가관리를 위한 소프로 집단의 전문가 구성이 필요, 지역별 전후 농가의 자료를 전문적인 농가 관리 요원을 통해서 데이터를 수집하고, 그것을 분석하는 인프라가 구축되어야 함</td>
</tr>
<tr>
<td>(유용유전자 및 유전자원 개발 기술) 유전자 편집 쌀, 토마토, 콩, 옥수수 등의 상업화 하기가 있탈아 나타나고 있는 만큼 우리나라의 관련 법 제도 개선에 적극적으로 앞장서야 할 것으로 시사됨</td>
</tr>
<tr>
<td>(유용유전자 및 유전자원 개발 기술) 전자 발현조절기술 분야의 우수한 기술개발 성과에도 불구하고 GMO 시장에 진입하지 못한 경험을 반영교사 생아 법과 관련 제도의 조속한 개선을 통해 유전자 교감기술로 대표되는 식품농산기술 시장에 진출하기 위한 노력이 매우 시급함</td>
</tr>
<tr>
<td>(친환경 시양기술) 정부는 기술을 개발하기 위한 기반 기술(예를 들어 친환경의 정도를 정량화할 수 있는 시설 및 방법론) 및 인프라의 구축에 힘을 써야 함</td>
</tr>
<tr>
<td>(친환경 시양기술) 현재와 미래 환경의 친환경 시양기술에 대한 개발요구 수준은 단편적 요소기술 개발을 넘어선 정량분류(글로벌이슈, 정치지원, 지속가능한 축산업)로 확대되고 있으므로, 이에 대응하기 위한 인프라 구축의 확대 강화가 중요한 과제 사항임</td>
</tr>
<tr>
<td>(동물 질병 통제 기술) 현장-수화-축산-ICT-총연관-정부기관 등의 기술 및 행정적 상호협력을 통한 높은 시너지를 기대할 수 있는 분야임</td>
</tr>
<tr>
<td>(동물 질병 통제 기술) 동물 질병의 선별 대응 및 사후 관리, 데이터 정보 등의 관리, WHO/FAO(세계동물보건기구) 등 동물복지 관련, 질병 대응 체계의 선진화 등 관련 법-제도 개선 필요</td>
</tr>
<tr>
<td>(ICT 기반 수산양식 및 수산자원 개발 기술) 스마트 양식 클러스터 사업으로 구축된 인프라의 적극적 활용 및 테스트베드 역할 필요, 관련 기자재 및 기구축량 다양한 장비의 장단기 모니터링을 통한 성능 향상이 필요, 관련 산업체의 기반 조성을 통해 국내 산업의 활성화뿐만 아니라 수출물을 육성 필요</td>
</tr>
<tr>
<td>(ICT 기반 수산양식 및 수산자원 개발 기술) 국내외 지책 간 협력은 여론에 따라 추진 될 필요가 있음</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>식품 관련 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>(식품안전성 평가·항상 기술) 식품의약처가 다량의 식품에 적용할 수 있도록 생산·가공·유통·소비 단계별 모니터링 시스템 필요</td>
</tr>
<tr>
<td>(식품안전성 평가·항상 기술) 식품 표준화에 있어서 국제적 활동의 부족은 식품안전성 관련기술의 발전에도 영향을 미침, 세계적으로 사전예방적 차원의 식품안전 정책의 기조는 국내에서도 식품원료에 대한 안전성 확보전략과 기술개발 및 국제협력을 강화해야 식품안전성 평가기술의 기초기반을 다질 수 있음</td>
</tr>
<tr>
<td>(식품가치창출기술) 고시형 원료뿐 아니라 개별인정형 건강기능성 식품소재를 활용한 기능성표시식품 개발을 위한 제도 개선 시 식품산업의 성장 및 가치향성이 기대됨</td>
</tr>
</tbody>
</table>
8 생명·보건의료

[기술평가] 한국의 기술수준은 최고기술 보유국(미국) 대비 79.4% 수준이며, 2.9년 격차를 보임

- 국가별 미국, EU를 일본, 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.9년의 격차를 보이고 있음
- 기술별 한국의 ‘유전자·세포치료기술’, ‘질병진단 바이오칩 기술’은 82.5% 수준으로 생명·보건의료 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 기술은 ‘맞춤형 신약 개발 기술’임

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>생명·보건의료</td>
<td>79.4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>합성생물학</td>
<td>75.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>감염병 백신·치료기술</td>
<td>75.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>유전자·세포치료기술</td>
<td>82.5</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>디지털 헬스메타데이터 분석·활용기술</td>
<td>80.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>맞춤형 신약 개발 기술</td>
<td>70.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>지능형 약물 전달 최적화 기술</td>
<td>85.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>불임·난임극복기술</td>
<td>80.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>한의약 효능 및 기전 규명기술</td>
<td>81.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>의료영상응용기술</td>
<td>75.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>재활 치료 및 생활지원 기기 기술</td>
<td>80.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>생체적합 재료 개발기술</td>
<td>82.0</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>초정밀 의료용 로봇 기술</td>
<td>75.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>질병진단 바이오칩 기술</td>
<td>82.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>낮신경계 질환 원인 규명 및 치료·예방기술</td>
<td>80.0</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>낮신호 감측 및 조절 기술</td>
<td>80.0</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

* 국가전략기술
(중간) 대부분의 기술이 ’20년 대비 기술수준이 증가하였으며, ’맞춤형 신약 개발 기술은 후발 그룹에서 추적그룹으로 한 단계 상승

〈 기술수준 및 기술격차 증가 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(%)</th>
<th>기술수준고르</th>
<th>기술수준고르</th>
<th>기술수준고르</th>
</tr>
</thead>
<tbody>
<tr>
<td>맞춤형 신약 개발 기술</td>
<td>70.0</td>
<td>0.0</td>
<td>6.0</td>
<td>5.0</td>
<td>△1.0</td>
</tr>
<tr>
<td>지능형 약물 전달 최적화 기술</td>
<td>85.0</td>
<td>0.0</td>
<td>2.5</td>
<td>2.0</td>
<td>△0.5</td>
</tr>
<tr>
<td>병인·약물두복기술</td>
<td>85.0</td>
<td>80.0</td>
<td>△5.0</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>한약의 효능 및 기전 규명기술</td>
<td>81.0</td>
<td>81.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>의료영상응용기술</td>
<td>67.5</td>
<td>75.0</td>
<td>7.5</td>
<td>4.3</td>
<td>3.5</td>
</tr>
<tr>
<td>재활 치료 및 생활지원 기기 기술</td>
<td>78.0</td>
<td>80.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>생체적합 재료 개발기술</td>
<td>81.0</td>
<td>82.0</td>
<td>1.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>초정밀 의료용 로봇 기술</td>
<td>73.0</td>
<td>75.0</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>설병진단 바이오칩 기술</td>
<td>80.0</td>
<td>82.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>뇌신경질환 치료 지원 및 치료·예방기술</td>
<td>75.0</td>
<td>80.0</td>
<td>5.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>뇌신호 관측 및 조절 기술</td>
<td>70.0</td>
<td>80.0</td>
<td>10.0</td>
<td>4.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* ’20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

■ (연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

(연구개발역량 및 연구활동경향)

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>생물·보건의료</td>
<td>한국</td>
<td>일본</td>
<td>미국</td>
</tr>
<tr>
<td>협약생물학</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>감염병 백신·치료기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>유전자·세포 치료기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>디지털 혜스테이트 분석·활용기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>

* 국가전략기술
(논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 3~5위권 수준으로 나타남

(지표별) 한국 연구성과의 질적 수준은 논문은 3~5위권, 특허는 3~4위권이며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>5.1%</td>
<td>60.3%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>26.7%</td>
<td>136.2%</td>
</tr>
<tr>
<td>일본</td>
<td>5.9%</td>
<td>13.8%</td>
</tr>
<tr>
<td>EU</td>
<td>35.9%</td>
<td>34.7%</td>
</tr>
<tr>
<td>미국</td>
<td>26.5%</td>
<td>18.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>10.9%</td>
<td>408.9%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>중국</td>
<td>46.0%</td>
<td>425.4%</td>
</tr>
<tr>
<td>일본</td>
<td>6.8%</td>
<td>68.4%</td>
</tr>
<tr>
<td>EU</td>
<td>11.9%</td>
<td>46.5%</td>
</tr>
<tr>
<td>미국</td>
<td>24.4%</td>
<td>108.1%</td>
</tr>
</tbody>
</table>

(논문·특허지표별 주요 5개국 수준)

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국
✔ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 미국, EU가 우위에 있으나, 특히는 모든 면에서 미국이 우위

〈논문·특허의 양과 질 분석〉

논문의 양(집중도)과 질(영향력)

특허의 양(집중도)과 질(영향력)

※ □ 한국 □ 중국 □ 일본 □ EU □ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
분야별(생명·보건의료) 정책 제안

| 신약 관련 기술 | • (맞춤형 신약 개발 기술) 맞춤형 신약 개발 및 혁신 신약개발은 과학적 새로운 발견에 근거한 새로운 시도(ex. new modality or new therapeutic approach)에서 비롯됨. 이러한 새로운 기술들이 신약개발 경로로 넘어가는 최 단계가 바로 human POC(Proof-of-Concept)로 지칭되는 임상시험임. 국내 식약처 및 법·제도는 여전히 미국 FDA와 비교하면 부족한 것이 사실임. 임상시험 심사료의 증가 및 관련 전문인력 확충 등을 통해 개선되어야 할 부분임.
• (맞춤형 신약 개발 기술) 중국의 사례에서 보면 단기간에 신약개발 관련 기술 및 산업 발전의 커다란 축은 관련 전문인력임. 최근에는 한국의 유학 인력들도 대학원을 고집하고 있으며 Pharma & biotech industry로 많이 진출하고 있는 추세임. 이들 전문인력의 국내 유입 및 국내 인력양성을 위한 다양한 제도적 유인책 및 관련 산업에 대한 국내 인력이 양성될 수 있도록 제도적 support가 필요함.
• (지능형 약물 전달 최적화 기술) 국내 혁신은 동종, 이상 분야의 융합 협력 절차가 필요할 것이 아님. GMP(Good Manufacturing Practice) 시설 보유기관 및 기업, 혁신 첨단 기술 보유 학교, 교수, 백서 기업 간의 협력과 산업적 모델을 지향하는 국내 협력 방식이 제시되어야 함. |
| 임상·보건 관련 기술 | • (불임·남인 극복기술) 각 병원에 있는 담임에 대한 경험가 많은 병원사udio급 인력들이 상호 기초 연구와 교류를 할 수 있도록 충분한 인력 확보를 기능하게 할 수 있게 하여야 하며. 그 외 함께 혜택 병원들이 경험 있는 연구인력을 연구기관 동안 제공될 수 있도록 인건비 및 기술료 합계를 제공하여 임상 관련 기초 연구가 가능하도록 지원해야 함.
• (불임·남인 극복기술) 단순 시술 기술의 증진뿐 아니라 장비 등의 국산화로 위해 충분한 교류 확보가 필요. 기기 제작, AI 관련 기술접목, 유전자 전기접목, 자기서료 등의 연구와의 임상 적용 등에 대한 심도 있는 논의가 필요.
• (한의약 효능 및 기전 규명기술) 한의학과 의학의 협력 체계 구축을 통한 한의학에서 발견된 기술들이 의학과 함께 발전할 수 있도록 법·제도적 정비가 시급. |
| 의료기기 관련 기술 | • (의료영상융합기술) 의료영상융합기술 연구결과물이 시장에서 상용화될 수 있음에는 현재의 병리조직들이 예전의 의료기기 기존에 맞춰져 있으며, 현실적인 병리조직으로 수정 채택하고자 정부에서 추진하고 있으나, 연구개발의 산업계의 습도에 따라기지 못하는 실정임. 규제상 문제, 세금체납 문제 등을 첫 번에 고려하고 있으나, 기술개발 결과물이 상용화하기에는 시장의 규제가 개선되지 않고 있음.
• (재활 치료 및 생활지원 기기 기술) OT활용, AV활용 등 S/W 신기술을 적용한 환자 맞춤형 재활치료기 개발에 있어 의료법 및 관련 법 제도 내에서 신기술을 활용한 제품 개발 및 상용화에 제약이 있음. 이에 따라 적극적인 규제 개선이 요구됨.
• (생체적합 재료 개발기술) 국내 인간가 승인을 받는 과정이 복잡하고 어려운데도 불구하고, 지속적으로 안전성 논의가 발생, 관련 규제 및 하가 절차를 간소화하고 효율적인 검토 시스템 마련 시급.
• (초정밀 의료용 로봇 기술) 초정밀 의료용 로봇은 의료기기 3-4단계기기에 비해심. 임상적 필요하며 인기가까지 점차가 소요되기 때문에 기업들 차원에서 쉽게 개발하기 어렵기 때문에 연구비 확대를 통한 지원이 필요함.
• (질병진단 바이오클 기술) 인체유래 검체 획득 및 처리를 위한 중 더 간소화해서 인체유래로 물질관리를 상급종합병원 중심으로 통합하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함. |
| 뇌과학 관련 기술 | • (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함.
• (뇌과학 기전 재구연) 뇌과학 기전 복원성 연구기술 고려하여 연구자들의 접근성을 증 더 간소화하는 정책이 필요함. |

※ 해당분야 기술 중 국가전략기술 관련 정책제안은 IV장 참조.
9 에너지·자원

(기술수준·격차) 한국의 기술수준은 최고기술 보유국(미국) 대비 84.5% 수준이며, 3.2년 격차를 보임

(국가별) 미국, EU를 일본, 중국, 한국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 3.2년, 2.8년의 격차를 보이고 있음

(기술별) 한국의 이차전지 관련 기술은 95%~100% 수준으로 세계 최고수준을 보이고 있음

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>에너지·자원</td>
<td>84.5 85.2 91.8 95.8 100.0</td>
<td>3.2 2.8 1.7 0.8 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>리튬이온전지 및 핵심소재 기술</td>
<td>100 90.0 1000 80.0 82.0</td>
<td>0.0 1.0 0.0 5.0 2.0</td>
<td>최고 추격 최고 추격 추격</td>
</tr>
<tr>
<td>차세대 이차전지 소재·생산기술</td>
<td>1000 90.0 1000 80.0 90.0</td>
<td>0.0 3.0 0.0 3.5 0.5</td>
<td>최고 추격 최고 추격 선도</td>
</tr>
<tr>
<td>이차전지 모듈·시스템기술</td>
<td>97.5 90.0 1000 75.0 90.0</td>
<td>0.5 1.3 0.0 2.8 1.3</td>
<td>선도 추격 최고 추격 추격</td>
</tr>
<tr>
<td>이차전지 재사용·재활용 기술</td>
<td>95.0 1000 82.0 80.0 80.0</td>
<td>1.0 0.0 1.8 3.0 2.3</td>
<td>선도 추격 추격 추격 추격</td>
</tr>
<tr>
<td>수전해 수소생산기술</td>
<td>80.0 77.5 94.0 97.5 100.0</td>
<td>3.0 3.8 0.8 0.0 0.0</td>
<td>추격 후발 선도 선도 최고</td>
</tr>
<tr>
<td>수소저장·운송기술</td>
<td>70.0 65.0 95.0 1000 99.0</td>
<td>5.0 5.0 1.0 0.0 1.0</td>
<td>추격 후발 선도 최고 선도</td>
</tr>
<tr>
<td>수소연료전지 및 발전기술</td>
<td>85.0 75.0 1000 94.0 100.0</td>
<td>3.0 4.0 0.0 1.5 0.0</td>
<td>추격 후발 선도 선도 최고</td>
</tr>
<tr>
<td>소형모듈화원자[SMR]기술</td>
<td>86.0 84.0 80.0 80.0 100.0</td>
<td>4.0 5.0 5.0 3.0 0.0</td>
<td>추격 추격 추격 추격 추격</td>
</tr>
<tr>
<td>선진원자력시스템·폐기물 관리 기술</td>
<td>80.0 82.0 85.0 95.0 100.0</td>
<td>6.0 4.0 4.0 2.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>핵융합에너지 기술</td>
<td>80.0 80.0 90.0 1000 100.0</td>
<td>5.0 3.8 3.0 0.0 0.0</td>
<td>추격 추격 선도 최고 최고</td>
</tr>
<tr>
<td>차세대가속기 기술</td>
<td>65.0 75.0 90.0 95.0 100.0</td>
<td>8.0 5.0 2.0 0.5 0.0</td>
<td>후발 추격 선도 선도 최고</td>
</tr>
<tr>
<td>무선 전력전송·충전 기술</td>
<td>80.0 85.0 80.0 80.0 100.0</td>
<td>2.0 1.5 1.5 1.5 0.0</td>
<td>추격 추격 추격 추격 최고</td>
</tr>
<tr>
<td>스마트 에너지그리드 기술</td>
<td>85.0 80.0 90.0 98.0 100.0</td>
<td>2.5 3.0 1.5 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>고용률 전력수송 기술</td>
<td>85.5 90.0 91.0 1000 95.0</td>
<td>2.3 1.5 1.0 0.0 0.5</td>
<td>추격 추격 추격 선도 선도</td>
</tr>
<tr>
<td>고용률 가스전송 기술</td>
<td>70.0 65.0 95.0 98.0 100.0</td>
<td>5.5 6.0 1.0 0.5 0.0</td>
<td>추격 후발 선도 선도 최고</td>
</tr>
<tr>
<td>배이오 및 폐자원 에너지화 기술</td>
<td>80.0 79.5 85.0 1000 100.0</td>
<td>4.8 4.0 3.0 0.0 0.0</td>
<td>추격 추격 추격 최고 최고</td>
</tr>
<tr>
<td>지열에너지기술</td>
<td>70.0 76.0 90.0 96.0 100.0</td>
<td>5.5 3.5 2.0 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>고용률 태양전지 기술</td>
<td>90.0 90.0 90.0 1000 95.0</td>
<td>1.5 1.5 1.5 0.0 1.0</td>
<td>추격 추격 추격 추격 선도</td>
</tr>
<tr>
<td>풍력발전 기술</td>
<td>76.0 85.0 75.0 1000 95.0</td>
<td>5.0 3.0 5.0 0.0 1.0</td>
<td>추격 추격 후발 최고 선도</td>
</tr>
<tr>
<td>해양에너지 기술</td>
<td>83.0 80.0 84.0 1000 91.0</td>
<td>4.5 5.0 4.0 0.0 1.5</td>
<td>추격 추격 추격 추격 선도</td>
</tr>
<tr>
<td>지능형 융합 자원탐사 기술</td>
<td>65.0 82.5 75.0 90.0 100.0</td>
<td>5.5 3.5 4.0 2.0 0.0</td>
<td>후발 추격 추격 선도 최고</td>
</tr>
<tr>
<td>ICT산업 자원 개발·처리 기술</td>
<td>70.0 83.0 75.0 90.0 100.0</td>
<td>5.0 3.0 4.0 1.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
<tr>
<td>아산화탄소 포집·저장·이용 기술</td>
<td>80.0 85.0 90.0 95.0 100.0</td>
<td>5.0 5.0 3.0 1.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
</tr>
</tbody>
</table>

* 국가전략기술
〈기술수준 및 기술격차 종합〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'20 '22</td>
<td>'20 '22</td>
<td>'20 '22</td>
</tr>
<tr>
<td>핵융합에너지기술</td>
<td>75.0 80.0</td>
<td>6.0 5.0</td>
<td>△1.0</td>
</tr>
<tr>
<td>차세대가속기기술</td>
<td>67.5 65.0</td>
<td>7.0 8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>무선전력송전·전전기술</td>
<td>80.0 80.0</td>
<td>2.0 2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>소마트에너지그리드기술</td>
<td>80.0 85.0</td>
<td>5.0 2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>고효율전력송전기술</td>
<td>90.0 85.5</td>
<td>△4.5 2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>고효율가스발전기술</td>
<td>65.0 70.0</td>
<td>5.0 7.0</td>
<td>0.5</td>
</tr>
<tr>
<td>바이오 및 패조원에너지화기술</td>
<td>78.0 80.0</td>
<td>2.0 4.0 4.8 0.8</td>
<td>추격</td>
</tr>
<tr>
<td>자연에너지기술</td>
<td>69.0 70.0</td>
<td>1.0 5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>고효율태양전지기술</td>
<td>90.0 90.0</td>
<td>1.0 1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>풍력발전기술</td>
<td>75.0 76.0</td>
<td>1.0 5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>해양에너지기술</td>
<td>81.0 83.0</td>
<td>2.0 4.5</td>
<td>0.0</td>
</tr>
<tr>
<td>지능형융합자원탐색기술</td>
<td>59.5 65.0</td>
<td>5.5 6.3</td>
<td>0.8</td>
</tr>
<tr>
<td>ICT기반자원개발·처리기술</td>
<td>70.0 70.0</td>
<td>0.0 5.0 5.0 0.0</td>
<td>추격</td>
</tr>
<tr>
<td>아산화탄소포집·저장·이용기술</td>
<td>80.0 80.0</td>
<td>0.0 5.0 5.0 0.0</td>
<td>추격</td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

■ (연구개발역량·경향) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

특히, ‘이차전지 모듈·시스템기술’의 기초역량, ‘리튬이온전지 및 핵심소재기술’, ‘이차전지 재사용·재활용기술’의 응용연구개발역량은 탁월한 것으로 나타남

〈연구개발역량 및 연구활동경향〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한국 중국 일본 EU 미국</td>
<td>한국 중국 일본 EU 미국</td>
<td>한국 중국 일본 EU 미국</td>
</tr>
<tr>
<td>에너지·자원</td>
<td>우수 우수 우수 탁월 탁월</td>
<td>우수 우수 우수 우수 탁월</td>
<td>/ / / /</td>
</tr>
<tr>
<td>리튬이온전지 및 핵심소재기술</td>
<td>우수 우수 탁월 우수 우수</td>
<td>우수 우수 우수 우수 보통 보통</td>
<td>/ / / /</td>
</tr>
<tr>
<td>차세대이차전지소재·설계기술</td>
<td>우수 보통 우수 우수 우수</td>
<td>우수 우수 우수 우수 탁월 보통 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>이차전지모듈·시스템기술</td>
<td>탁월 우수 보통 우수 우수 우수</td>
<td>우수 우수 우수 보통 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>이차전지재사용·재활용안정기술</td>
<td>우수 보통 우수 탁월 우수</td>
<td>우수 우수 우수 보통 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>수전화·수소생산기술</td>
<td>우수 우수 탁월 탁월 우수</td>
<td>우수 우수 탁월 보통 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>수소저장·운반기술</td>
<td>보통 보통 탁월 탁월 탁월</td>
<td>우수 우수 탁월 우수 탁월</td>
<td>/ / / /</td>
</tr>
<tr>
<td>수소로yd선전기술 및 발전기술</td>
<td>우수 보통 탁월 우수 탁월 우수</td>
<td>우수 탁월 우수 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>소형모듈화치료(SMR)기술</td>
<td>보통 우수 탁월 탁월 우수 우수 보통 우수</td>
<td>우수 우수 탁월 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>선전원자기시스템·폐기물관리기술</td>
<td>우수 우수 우수 탁월 우수 우수 우수</td>
<td>우수 우수 탁월 우수</td>
<td>/ / / /</td>
</tr>
<tr>
<td>핵융합에너지기술</td>
<td>보통 우수 탁월 탁월 우수 우수 우수 탁월</td>
<td>우수 우수 탁월 탁월</td>
<td>/ / / /</td>
</tr>
<tr>
<td>차세대가속기기술</td>
<td>보통 우수 탁월 탁월 보통 우수 탁월 탁월</td>
<td>우수 우수 탁월 탁월</td>
<td>/ / / /</td>
</tr>
<tr>
<td>무선전력송전·전전기술</td>
<td>우수 우수 우수 탁월 우수 우수 보통 보통</td>
<td>우수 우수 탁월 탁월</td>
<td>/ / / /</td>
</tr>
<tr>
<td>기술명</td>
<td>기초연구개발역량</td>
<td></td>
<td>응용연구개발역량</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>스마트 에너지그리드 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>고효율 전력수송 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>고효율 가스발전 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>바이오 및 패자원 에너지화 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지열에너지기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>고효율 태양전지 기술</td>
<td>우수</td>
<td>우수</td>
<td>타원</td>
</tr>
<tr>
<td>풍력발전 기술</td>
<td>보통</td>
<td>보통</td>
<td>타원</td>
</tr>
<tr>
<td>해양에너지 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>지능형 융합 자원탐사 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>ICT기반 자원개발-관리 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>이산화탄소 포집·저장·이용 기술</td>
<td>우수</td>
<td>우수</td>
<td>타원</td>
</tr>
</tbody>
</table>
* 국가전략기술

■ (논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 3~5위권 수준으로 나타남

✔ (지표별) 한국 연구성과의 질적 수준은 논문은 3~5위권, 특허는 4위권이며, 전반적으로 논문의 질적 수준은 미국이, 특허의 질적 수준은 미국, 일본이 우위에 있음

논문분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동량(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>7.0%</td>
<td>78.3%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>41.4%</td>
<td>217.4%</td>
</tr>
<tr>
<td>일본</td>
<td>8.7%</td>
<td>32.6%</td>
</tr>
<tr>
<td>EU</td>
<td>26.1%</td>
<td>72.4%</td>
</tr>
<tr>
<td>미국</td>
<td>16.8%</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

특허분석 지표 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동량(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>16.3%</td>
<td>61.3%</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>47.4%</td>
<td>201.6%</td>
</tr>
<tr>
<td>일본</td>
<td>20.1%</td>
<td>-1.8%</td>
</tr>
<tr>
<td>EU</td>
<td>6.2%</td>
<td>8.0%</td>
</tr>
<tr>
<td>미국</td>
<td>10.0%</td>
<td>-4.8%</td>
</tr>
</tbody>
</table>
< 논문·특허지표별 주요 5개국 수준 >

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

✔ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특허의 질은 미국이 우위에 있는 것으로 나타남

〈 논문·특허의 양과 질 분석 〉

<table>
<thead>
<tr>
<th>논문의 양(집중도)와 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

※ ■ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
분야별(에너지·자원) 정책 채언

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>핵융합·가스기 관련 기술</td>
<td>(핵융합에너지기술) 핵융합선도사업을 통해 플라즈마 중심의 연구가 주로 진행되며 투자실태의 뉴딜은 대표적인 성과. 플라즈마 기술은 요구되는 석탄체계의 뉴딜도 나름의 의미가 있다고 생각됨. 향후 과학기술이 필요하다, 선도센터 사업, 출연(연)을 통한 인력 유치는 제한적. 가능한 기존 구축 정비 운영 지원을 통해 인력을 얻는 방안도 고려해볼 필요 있음. (핵융합에너지기술) 핵융합성장지원은 선도국 대표적 기존, 현재 미국 에너지부에서 RFI(Request for Information)를 통해 5개 기관을 선정한 예정인 점을 보면 국제주류에 뒤파워 국내 현실에 맞는 수준 높은 정비 구축이 필요. 새로운 브릿지 시험장, 연관 사고해석·검증 등 필수적이고 많은 인력 참여가 가능할 것임. (차세대가스기기술) 발전을 위해서는 지속적인 투자로 연구비 확대가 필요함. 중국의 경우 연구비를 비약적으로 확대하여 전 세계의 우수 인재들을 유치함.</td>
</tr>
<tr>
<td>전력 및 에너지 저장 관련 기술</td>
<td>(무선 전력전송·저장 기술) 무선전력 주파수 허용, 전자파, 전자기기 기준에 대해 대적적으로 검토하고 기준 완화 등을 추진할 필요. 국내 관련 산업 생태계를 완성하게 했는데, 발전될 수 있도록 End-user의 적극적인 관심과 투자가 필요함. 산업체의 과감한 투자가 이루어질 수 있는 정부정책 마련이 필요함. (시스템 에너지로그리드 기술) 신속한 시스템 에너지로그리드 기술 관련 표준 및 기술기준 마련과 함께, 경제성 확보가 가능한 에너지 산업 환경 조성을 통해, 민간 중심의 관련 산업 경쟁력 제고 전략 마련 필요. 특히, 에너지 부문 간 경계를 확대할 수 있는 보다 유연한 법제도 개선은 전기·열 등 에너지 부문 간 결합을 활성화하는 전략적 기회. (고털목 전력수송 기술) HVDC, MVDC, FACTS, 초진도케이블 등 고털목 전력수송 관련 전력시스템의 국산화, 상용화를 위한 연구 활성화를 위해서는 연구비 확대 투자가 먼저 선정되어야 할 것으로 생각됨.</td>
</tr>
<tr>
<td>신재생에너지 관련 기술</td>
<td>(고농도 가스발전 기술) 기체의 특성상, 대규모의 시설 설비 인프라가 필요하지만, 민간에서 구축과 유지가 불가능한 수요인 정부 차원의 시설 인프라 구축 및 운영·지원이 필요함. (바이오 및 폐자원 에너지기술) 바이오매스 확보 차원에서, 국제적 경쟁이 본격화되기 전에 국제적으로 바이오매스 확보 차원 외국제협력이 필요함. (지열에너지기술) 심부지열에너지의 경우 미국을 중심으로 공격적인 투자가 이루어지고 있음. 유럽의 경우에도 우크라이나 전쟁 이후 올공급 불안을 중심으로 연구가 활발함. 우리나라의 경우 지진의 여파가 가시지 않은 상황으로 공격적인 투자는 힌드나 해외 동향을 유심히 파악하고 국제협력을 중심으로 적정규모의 연구 생태계 유지가 필요함. (고열기술·저장기술) 탄소중립을 위한 해상산업인 태양광산업 기반구축이 매우 필요함. 중국과의 글로벌 기술경쟁력 확보를 위해 R&D 연구비의 대폭적인 확대가 필요함. 특히 상용화 실태분석 대상지역 및 배터리가 이온급품 터치 없이 연구 창조가 일반형 터치한 600W 고출력 모듈과 BiPV 모듈 개발을 위한 R&D 지원이 필요함. (공학발전 기술) 가장 시급한 것이 해외시장 진출 및 국내 시장 트랙레코드를 선정을 위한 정책적 지원 및 각종 규제의 완화가 필요함. (해양에너지기술) 파열발전설계사항 및 조류발전설계사항이 구축되었거나 구축 중에 있기 때문에 인프라에 대한 대규모 신규투자는 필요하지 않을 것으로 보이나, 많은 예산을 투입하여 구축한 이등 인프라가 잘 활용될 수 있도록 미국의 TEAMER, 유럽의 Maritmon 등과 같은 기업의 실험·실증에 연구기관 및 대학의 인프라 활용 축진 프로그램 추진 필요.</td>
</tr>
<tr>
<td>지원 개발 및 활용 관련 기술</td>
<td>(지능형 용적 자원 탐사) 자원탐사(특히 해양 자원탐사)는 필요적으로 주변 주민들(아이들)과 수용성 문제로 갈등이 생길 수 있음. 실제 자원탐사에 수행하는 임상에서는 주민들과의 수용성 문제 해결이 탐사의 난이도보다 더 높은 계 현실임. 정부에서 이러한 탐사기술과 관련된 지원뿐만 아니라 주민들과의 수용성 문제를 해결할 수 있도록 도움이 될 수 있는 정책적 지원이 필요함. (ICT를 반 카본 개발·처리 기술) 국내 에너지·자원 산업 및 개발기업의 경쟁력 향상, 우호적 사회복재조의 조성 화를 위해서는 국가·공공·중심 지원체계 구축 필요. (산화탄소 포집·저장·이용 기술) 탄소저장 사업은 석유·가스 사업에 비해 사업 성공 확률이 높아 탄소저장사업이 자원개발사업과의 리스크를 보완할 수 있음. 혜택의 자원개발성공용지 제도의 보완을 통해 이론의 기존의 자원개발사업뿐만 아니라 석유가스전 활용 기반의 탄소저장 사업에도 응용지지가 가능하도록 제도 보완 필요. 백만조 규모 CCS 실증 및 2030 NDC 달성을 위한 CCUS 실증 연구비 확대 필요.</td>
</tr>
</tbody>
</table>

※ 해당분야 기술 중 국가전략기술 관련 정책제언은 IV장 참조.
환경·기상

(기술수준·격차)
한국의 기술수준은 최고기술 보유국(미국) 대비 83.9% 수준이며, 3.5년 격차를 보임

- **국가별** 미국, EU를 일본, 한국, 중국이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 3.5년, 4.5년의 격차를 보이고 있음
- **기술별** 한국의 '고효율 천환경 Non-CO2 온실가스 저감 기술'은 90%수준으로 환경·기상 분야에서 가장 높은 기술수준을 보이고 있으며, 가장 낮은 분야는 '지능형 자연생태계 보전 및 복원기술'임

(기술수준 및 기술격차)

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경·기상</td>
<td>83.9</td>
<td>78.6</td>
<td>99.9</td>
</tr>
<tr>
<td>미세먼지 등 대기오염 대응기술</td>
<td>85.0</td>
<td>80.0</td>
<td>87.0</td>
</tr>
<tr>
<td>기후변화 감시·예측·대응 기술</td>
<td>85.0</td>
<td>87.5</td>
<td>90.0</td>
</tr>
<tr>
<td>고효율 천환경 Non-CO2 온실가스 저감 기술</td>
<td>90.0</td>
<td>85.0</td>
<td>95.0</td>
</tr>
<tr>
<td>자연재해 감시·예측·대응 기술</td>
<td>80.0</td>
<td>80.0</td>
<td>87.0</td>
</tr>
<tr>
<td>유해요인의 환경·인체 위해성 평가 기술</td>
<td>80.0</td>
<td>75.0</td>
<td>77.5</td>
</tr>
<tr>
<td>생활환경 안전성진단 및 예방 기술</td>
<td>80.0</td>
<td>60.0</td>
<td>83.5</td>
</tr>
<tr>
<td>스마트 물순환 및 수자원 확보·관리 기술</td>
<td>88.0</td>
<td>83.0</td>
<td>93.0</td>
</tr>
<tr>
<td>통합 수환경 모니터링 및 관리 기술</td>
<td>80.0</td>
<td>75.0</td>
<td>90.0</td>
</tr>
<tr>
<td>수환경오염물질 초고도 처리 및 재어 기술</td>
<td>82.5</td>
<td>75.0</td>
<td>90.0</td>
</tr>
<tr>
<td>토양·지하 환경오염 관리기술</td>
<td>85.0</td>
<td>72.5</td>
<td>83.5</td>
</tr>
<tr>
<td>지능형 자연생태계 보전 및 복원 기술</td>
<td>75.0</td>
<td>70.0</td>
<td>85.0</td>
</tr>
<tr>
<td>패자원 재활용 기술</td>
<td>85.0</td>
<td>90.0</td>
<td>95.0</td>
</tr>
</tbody>
</table>
✔ (중간) 대부분의 기술이 '20년 대비 기술수준이 증가하였으나, '유해요인의 환경·인체 위해성 평가 기술'은 소폭 감소

〈 기술수준 및 기술격차 증감 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
<th>증감</th>
<th>증감</th>
</tr>
</thead>
<tbody>
<tr>
<td>미세먼지 등 대기오염 대응기술</td>
<td>70.0 85.0 15.0 4.8 3.0 △1.8</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>기후변화 감시·예측·적응 기술</td>
<td>80.0 85.0 5.0 4.0 4.8 0.8</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>고효율 친환경 Non-CO2 온실가스 저감 기술</td>
<td>88.5 90.0 1.5 2.3 2.8 0.5</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>자연재해 감시·예측·대응 기술</td>
<td>75.0 80.0 5.0 5.0 5.0 0.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>유해요인의 환경·인체 위해성 평가 기술</td>
<td>82.5 80.0 △2.5 3.8 3.8 △0.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>생활환경 안전성진단 및 예방 기술</td>
<td>77.5 80.0 2.5 3.5 3.3 △0.3</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>스마트 물류관 및 수자원 확보·관리 기술</td>
<td>85.0 88.0 3.0 4.0 4.0 0.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>통합 수환경 모니터링 및 관리 기술</td>
<td>80.0 80.0 0.0 5.0 4.0 △1.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>수환경오염물질 초고도 처리 및 제어 기술</td>
<td>79.3 82.5 3.2 2.8 2.8 △0.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>토양·지중 환경오염 관리기술</td>
<td>84.0 85.0 1.0 3.0 3.3 0.3</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>지능형 자연재해에애 보전 및 복원 기술</td>
<td>75.0 75.0 0.0 6.5 6.0 △0.5</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>패저원 재활용 기술</td>
<td>80.0 85.0 5.0 3.0 2.0 △1.0</td>
<td>추격</td>
<td>추격</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* '20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

■ (연구개발역량·경험) 한국은 기초연구, 응용연구 모두 개발역량이 우수한 수준이며 연구개발경향이 지속적으로 상승세

✔ 중국의 연구개발역량은 기초연구, 응용연구 모두 '보통' 수준으로 나타났으며, 일본의 연구개발경향은 '유지'로 분류되고 있는 것으로 나타남

〈 연구개발역량 및 연구활동경향 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발역량</th>
<th>응용연구개발역량</th>
<th>연구개발경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>환경·기상</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>미세먼지 등 대기오염 대응기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>기후변화 감시·예측·적응 기술</td>
<td>우수</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>고효율 친환경 Non-CO2 온실가스 저감 기술</td>
<td>우수</td>
<td>보통</td>
<td>탁월</td>
</tr>
<tr>
<td>자연재해 감시·예측·대응 기술</td>
<td>우수</td>
<td>탁월</td>
<td>탁월</td>
</tr>
<tr>
<td>유해요인의 환경·인체 위해성 평가 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>생활환경 안전성진단 및 예방 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>스마트 물류관 및 수자원 확보·관리 기술</td>
<td>우수</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>기술명</td>
<td>기초연구개발역량</td>
<td>응용연구개발역량</td>
<td>연구개발경향</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
</tr>
<tr>
<td>통합 수환경 모니터링 및 관리 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>수환경오염물질 초고도 처리 및 제어 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>토양·지층 환경오염 관리기술행</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>지능형 자연생태계 보전 및 복원 기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>폐사원 재활용 기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
</tbody>
</table>

■ (논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 4~5위권 수준으로 나타남

☑ (지표별) 한국 논문의 질적수준은 5위권, 특허의 질적수준은 4위권으로 나타났으며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음

〈 논문분석 지표 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
</tr>
<tr>
<td>순위</td>
</tr>
<tr>
<td>1위</td>
</tr>
<tr>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>논문(양적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 점유율</td>
</tr>
<tr>
<td>3.2%</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>33.2%</td>
</tr>
<tr>
<td>4.3%</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>

〈 특허분석 지표 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
</tr>
<tr>
<td>순위</td>
</tr>
<tr>
<td>1위</td>
</tr>
<tr>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허(양적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허 점유율</td>
</tr>
<tr>
<td>10.3%</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>중국</td>
</tr>
<tr>
<td>73.4%</td>
</tr>
<tr>
<td>6.1%</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>
논문·특허지표별 주요 5개국 수준

<table>
<thead>
<tr>
<th>논문지표 분석</th>
<th>특허지표 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>!논문지표 분석 그림</td>
<td>!특허지표 분석 그림</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

✔ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 EU가, 특허의 질은 미국이 우위에 있는 것으로 나타남

논문·특허의 양과 질 분석

<table>
<thead>
<tr>
<th>논문의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td>!논문의 양(집중도)과 질(영향력) 그림</td>
</tr>
</tbody>
</table>

특허의 양(집중도)과 질(영향력)

!특허의 양(집중도)과 질(영향력) 그림

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
<table>
<thead>
<tr>
<th>분야별(환경·기상) 정책 제언</th>
</tr>
</thead>
<tbody>
<tr>
<td>기후·대기 관련 기술</td>
</tr>
<tr>
<td>• (미세먼지 등 대기오염 대응기술) 그동안 미세먼지 및 대기환경 관련 인프라가 꾸준하게 증가되었지만, 여전히 미국, 유럽, 중국 등과 비교하여 매우 부족한 상황임. 이와 같은 인프라 부족은 미세먼지 원인 구명 및 대기오염 분야의 기술수준 격차가 더 벌어지는 결과를 초래할 수 있으며, 국제협력 및 기술개발에 기반한 국제사회에서 인정받을 수 있는 공동성과 도출이 쉽지 않을 수 있음</td>
</tr>
<tr>
<td>• (기후변화 감시·예측·적응 기술) 당면한 기후 변화 문제에 체계적으로 대응하기 위한 연구 구체화가 필요. 기후모델링, 적응·대응 기술개발 등을 전담하는 기초연구기관을 통해, 사정되고 있는 국내 연구 산출물을 체계적으로 집적할 수 있는 시스템을 갖추어야 함</td>
</tr>
<tr>
<td>• (고효율 친환경 Non–CO2 온실가스 저감 기술) 기술개발과 BAT(Best Available, 최적기술기술)를 공유하기 위한 국제협력이 필요하고 글로벌 이니셔티브에 참여하고 연구 결과를 공유하는 것이 필요함</td>
</tr>
<tr>
<td>• (지연재해 감시·예측·대응 기술) 국제적 수준의 연구 방향과의 연계성을 가지고 연구 사업추진이 중요함. 특히 재난 대비 관련 국외 현업기관과의 정책 방향에 대한 분석과 연계를 통해 실제로 활용 가능한 성과 창출이 가능할 것임</td>
</tr>
<tr>
<td>환경보전 관련 기술</td>
</tr>
<tr>
<td>• (유해요인의 환경·인체 위해성 평가 기술) 환경규제에 대한 국제적인 조화를 위해서, 관련 분야의 연구개발 결과물들의 교류와 활용을 위한 국제적인 협력이 요구됨. 예를 들어 중금속의 환경위해성 평가를 위한 biotic ligand model의 활용 및 환경기준 도출이나, 인체 독성망성 폼플리 ITS/IATA(Integrated Approaches to Testing and Assessment, 통합시험법근법) 개발, AOP(Adverse Outcome Pathway, 독성발생경로) 기반의 cumulative Risk Assessment 방법 적용을 위한 기술 자침의 작성 및 규제제도에 활용방안 마련은 국제공동연구가 필수적인 사항임</td>
</tr>
<tr>
<td>• (생활환경 안전성진단 및 예방 기술) 현재 생활환경 안전성진단 및 예방 기술분야는 다양한 R&D가 이루어지고 있으나 세부분야별로 응용이 이루어지지 않은 상황. 국내 협력을 통하여 시스템화 플랫폼화가 필요함</td>
</tr>
<tr>
<td>물관리 관련 기술</td>
</tr>
<tr>
<td>• (سواء 물순환 및 수자원 확보·관리 기술) 스마트도시 기업에서 개발된 기술을 테스트베드 수준으로 적용하여 활용성을 향상시키기 못하는 경우가 많아, 지속적으로 모니터링하고 개발 기술을 보완할 수 있는 실온 테스트를 할 수 있도록 국내 산학연 간의 협력이 필요함</td>
</tr>
<tr>
<td>• (통합 물순환 모니터링 및 관리 기술) 수량, 수질 모니터링 부문의 IoT 기술 및 디지털 트윈 기술이 급격히 발전하고 있으므로 이를 수용할 수 있는 법률도 개선할 등 신속히 마련할 필요</td>
</tr>
<tr>
<td>• (수환경오염물질 조치도 처리 및 제어 기술) 환경 기술에 필요한 기술 분야는 현장 적용 기술의 확보라고 생각함. 현장 적용 기술의 초기 확보를 위해서는 현장, 대형 기술개발 플랫폼 등이 구축되어야 함</td>
</tr>
<tr>
<td>토양 및 생태계 관련 기술</td>
</tr>
<tr>
<td>• (토양·지중 환경오염 관리기술) 선진국에 비해 늦게 출발한 토양환경 분야는 그동안 많이 발전되었으나 최근 탄소중립 및 기후변화에 대응하는 기술개발이 지속적으로 요구됨</td>
</tr>
<tr>
<td>• (지능형 자연생태계 보전 및 복원 기술) 국가 관련 기관의 연구비에 비해 대학 연구자가 참여할 수 있는 연구과제 수가 많지 않아서, 연구자가 문제해결형 과제를 제안해서 할 수 있는 시스템이 필요함</td>
</tr>
<tr>
<td>• (폐자원 재활용 기술) 자연 재활용 기술개발과 연계하여, 이를 상용화하기 위한 pilot–scale 공공프로젝트 구축 및 운용이 필수적으로 수반되어야 하며, 선순환 트래레코드 확보 시 기업 중심의 양산 인프라 구축 및 운용이 전주기·체계적으로 이뤄져야 함</td>
</tr>
</tbody>
</table>
11 ICT·SW

[기술평가] 한국의 기술평가는 최고기술 보유국(미국) 대비 82.6% 수준이며, 2.0년 격차를 보임

[국가별] 미국을 EU, 중국, 한국, 일본이 추격하고 있으며, 한국과 중국은 최고기술보유국과 각각 2.0년, 1.4년의 격차를 보이고 있음

[기술별] 한국의 프리즘 디스플레이기술 등 디스플레이 관련 기술은 세계 최고수준을 보이고 있으며, 양자분야 기술은 후발주자로서 선도국을 추격 중

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICT·SW</td>
<td>82.6 87.9 82.2 90.9 1000 2.0 1.4 2.0 1.1 0.0</td>
<td>추격 추격 추격 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>효율적 학습 및 AI인프라(SW/HW) 고도화기술</td>
<td>70.0 90.0 70.0 85.0 1000 3.0 1.5 3.5 1.5 0.0</td>
<td>후발 추격 후발 추격 최고</td>
<td></td>
</tr>
<tr>
<td>점단 AI 모델링·의사결정 (인지·판단·추론)기술</td>
<td>85.0 90.0 80.0 85.0 1000 1.8 1.3 2.3 2.0 0.0</td>
<td>추격 추격 후발 추격 최고</td>
<td></td>
</tr>
<tr>
<td>산업 활용·혁신 AI기술</td>
<td>80.0 93.5 75.5 85.0 1000 2.0 1.0 2.3 1.5 0.0</td>
<td>추격 선도 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>안전·실크 AI기술</td>
<td>80.0 90.0 80.0 95.0 1000 2.0 1.5 2.0 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>5G 고도화(5G Adv)기술</td>
<td>90.0 97.5 86.5 98.5 1000 1.0 0.5 1.8 0.3 0.0</td>
<td>추격 선도 후발 선도 최고</td>
<td></td>
</tr>
<tr>
<td>6G기술</td>
<td>90.0 1000 83.0 95.0 1000 1.0 0.0 1.5 0.5 0.0</td>
<td>추격 최고 후발 추격 최고</td>
<td></td>
</tr>
<tr>
<td>오픈런(Open-RAN)기술</td>
<td>80.0 85.0 77.5 95.0 1000 1.0 0.8 1.5 0.5 0.0</td>
<td>추격 추격 후발 선도 최고</td>
<td></td>
</tr>
<tr>
<td>고효율 5G·6G 통신부품기술</td>
<td>90.0 95.0 85.0 94.0 1000 1.0 0.5 1.5 1.0 0.0</td>
<td>추격 선도 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>5G·6G 워싱통신기술</td>
<td>80.0 90.0 80.0 94.0 1000 3.0 1.0 2.8 0.8 0.0</td>
<td>추격 추격 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>데이터·AI 보안기술</td>
<td>85.0 93.0 80.0 95.0 1000 1.8 1.0 2.3 1.0 0.0</td>
<td>추격 추격 후발 선도 최고</td>
<td></td>
</tr>
<tr>
<td>디지털 취약점 분석·대응(공급망 보안)기술</td>
<td>85.0 85.0 80.0 93.0 1000 2.0 1.5 2.5 1.0 0.0</td>
<td>추격 추격 후발 선도 최고</td>
<td></td>
</tr>
<tr>
<td>네트워크·클라우드 보안기술</td>
<td>82.0 89.0 80.0 93.0 1000 3.3 2.0 4.0 1.0 0.0</td>
<td>후발 추격 후발 추격 최고</td>
<td></td>
</tr>
<tr>
<td>산업·가상융합 보안기술</td>
<td>85.0 88.0 85.0 95.0 1000 2.0 1.0 2.0 0.5 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>고잡적·저항기반 메모리기술</td>
<td>95.0 90.0 85.0 85.0 1000 1.0 1.5 1.5 1.5 0.0</td>
<td>추격 추격 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>반도체 점단 폐기물기술</td>
<td>90.0 85.0 90.0 85.0 1000 2.0 2.0 1.5 1.5 0.0</td>
<td>추격 추격 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>고성능·저전력 인공지능 반도체기술</td>
<td>80.0 90.0 70.0 85.0 1000 2.5 1.0 3.5 2.0 0.0</td>
<td>추격 추격 후발 추격 최고</td>
<td></td>
</tr>
<tr>
<td>전력반도체기술</td>
<td>70.0 75.0 85.0 95.0 1000 2.5 2.5 1.0 0.5 0.0</td>
<td>추격 추격 선도 선도 최고</td>
<td></td>
</tr>
<tr>
<td>차세대 고성능 센서기술</td>
<td>81.5 80.0 85.0 90.0 1000 2.0 2.5 1.3 1.0 0.0</td>
<td>추격 추격 추격 선도 최고</td>
<td></td>
</tr>
<tr>
<td>무기발광 디스플레이기술</td>
<td>91.0 86.0 85.0 86.0 1000 1.0 2.0 1.0 1.0 0.0</td>
<td>추격 추격 추격 추격 최고</td>
<td></td>
</tr>
<tr>
<td>기술명</td>
<td>기술수준(%)</td>
<td>기술격차(년)</td>
<td>기술수준그룹</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>박도체·디스플레이 소재·부품·정비기술</td>
<td>1000</td>
<td>80.0</td>
<td>1000</td>
</tr>
<tr>
<td>프리즘 디스플레이기술</td>
<td>1000</td>
<td>85.0</td>
<td>85.0</td>
</tr>
<tr>
<td>양자센싱기술</td>
<td>65.0</td>
<td>87.5</td>
<td>75.0</td>
</tr>
<tr>
<td>양자컴퓨팅기술</td>
<td>50.0</td>
<td>85.0</td>
<td>70.0</td>
</tr>
<tr>
<td>양자동신기술</td>
<td>80.0</td>
<td>1000</td>
<td>82.5</td>
</tr>
<tr>
<td>신경학 컴퓨터기술</td>
<td>75.0</td>
<td>80.0</td>
<td>85.0</td>
</tr>
<tr>
<td>시스템 SW 운영 및 기반 기술</td>
<td>72.5</td>
<td>82.5</td>
<td>80.0</td>
</tr>
<tr>
<td>기상·환경компон명</td>
<td>82.0</td>
<td>80.0</td>
<td>82.0</td>
</tr>
<tr>
<td>지능형 콘텐츠제작 기술</td>
<td>81.5</td>
<td>90.0</td>
<td>80.5</td>
</tr>
<tr>
<td>NUI·NUX 기술</td>
<td>84.0</td>
<td>85.0</td>
<td>86.0</td>
</tr>
<tr>
<td>초연결 사물인터넷 기술</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
</tr>
<tr>
<td>지능형 실감 방송·미디어 서비스 기술</td>
<td>90.0</td>
<td>86.5</td>
<td>87.5</td>
</tr>
</tbody>
</table>

* 국가전략기술

✔ 종합 20년 기술수준평균 결과와 비교가능한 기술 중 일부는 20년 대비 기술수준이 증가하였으나, 일부는 다소 감소한 것으로 나타남

〈 기술수준 및 기술격차 증감 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
<th>기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>'20</td>
<td>'22</td>
<td>증감</td>
<td>'20</td>
</tr>
<tr>
<td>신개념 컴퓨팅 기술</td>
<td>72.5</td>
<td>75.0</td>
<td>2.5</td>
</tr>
<tr>
<td>시스템 SW 운영 및 기반 기술</td>
<td>75.0</td>
<td>72.5</td>
<td>△2.5</td>
</tr>
<tr>
<td>기상·환경компон명</td>
<td>82.0</td>
<td>82.0</td>
<td>0.0</td>
</tr>
<tr>
<td>지능형 콘텐츠제작 기술</td>
<td>83.5</td>
<td>81.5</td>
<td>△2.0</td>
</tr>
<tr>
<td>NUI·NUX 기술</td>
<td>87.0</td>
<td>84.0</td>
<td>△3.0</td>
</tr>
<tr>
<td>초연결 사물인터넷 기술</td>
<td>88.0</td>
<td>85.0</td>
<td>△3.0</td>
</tr>
<tr>
<td>지능형 실감 방송·미디어 서비스 기술</td>
<td>87.0</td>
<td>90.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

* 20년 대비 변동된 50개 국가전략기술을 제외하고 직접 비교가 가능한 86개 기술만 증감 비교

□ 연구개발량·경향 한국은 영용연구개발량이 우수한 수준이며 연구개발경향이 지속적으로 상승하고 있으나, 기초연구개발라인은 ‘보통’ 수준

✔ 기초연구개발역량은 31개 기술 중 20개 기술이 ‘보통’ 수준으로 응용연구개발역량에 비해 상대적으로 취약
<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발영역</th>
<th>응용연구개발영역</th>
<th>연구개발영향</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>ICT·SW</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>효율적 학습 및 AI인프라 (SW/HW)</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>점진 AI 모델링·의사결정 (인자-판단-추론)</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>산업 활용·혁신 AI기술</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>안전·신뢰 AI기술</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>5G 고도화(5G Adv)기술</td>
<td>우수</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>6G기술</td>
<td>보통</td>
<td>탁월</td>
<td>우수</td>
</tr>
<tr>
<td>오픈랜(Open-RAN)기술</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>고효율 5G·6G 통신기반기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>디지털 취약점 분석·대응 (공급망 보안기술)</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>네탕워크·클라우드 보안기술</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>산업·가상경험 보안기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>고정력·저항기반 모래만기기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>반도체 점진 폐기장기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>고성능·저전력 인공지능 반도체기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>전력반도체기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>채재대 고성능 센싱기술</td>
<td>보통</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>무기발광 디스플레이기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>반도체·디스플레이 소재· 부품·장비기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>프리랜 디스플레이기술</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>양자센싱기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>양자컴퓨팅기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>양자통신기술</td>
<td>보통</td>
<td>탁월</td>
<td>우수</td>
</tr>
<tr>
<td>신개념 컴퓨팅 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>사스트 SW 운영 및 기반기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>가상·혼합현실 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지능형 콘텐츠제작 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>NUI·NUX 기술</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>초연결 사물인터넷 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>지능형 실감 방송·미디어 서비스 기술</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>

* ☐ 국가전략기술
(논문·특허 분석결과) 한국의 논문·특허의 증가율은 2위 수준이며, 질적 수준은 4~5위권 수준으로 나타남.

(지표별) 한국의 논문·특허의 증가율은 중국에 이어 2위 수준이며, 전반적으로 논문의 질적 수준은 EU가, 특허의 질적 수준은 미국이 우위에 있음.

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>7.0%</td>
<td>835.2%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>한국</td>
<td>35.0%</td>
<td>1284.6%</td>
</tr>
<tr>
<td>일본</td>
<td>6.1%</td>
<td>504.4%</td>
</tr>
<tr>
<td>EU</td>
<td>32.1%</td>
<td>648.7%</td>
</tr>
<tr>
<td>미국</td>
<td>19.8%</td>
<td>596.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>특허점유율</th>
<th>특허증가율</th>
<th>특허영향력</th>
<th>중요특허비율</th>
<th>해외출원도</th>
<th>IP4점유율</th>
<th>특허청구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>17.0%</td>
<td>5921.2%</td>
<td>7.4</td>
<td>22.5%</td>
<td>273.5%</td>
<td>27.4%</td>
<td>11.2</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>미국</td>
<td>EU</td>
<td>미국</td>
<td>미국</td>
</tr>
<tr>
<td>한국</td>
<td>51.1%</td>
<td>7659.9%</td>
<td>5.0</td>
<td>22.9%</td>
<td>154.0%</td>
<td>13.0%</td>
<td>8.9</td>
</tr>
<tr>
<td>일본</td>
<td>8.5%</td>
<td>1368.2%</td>
<td>6.0</td>
<td>9.4%</td>
<td>262.1%</td>
<td>12.4%</td>
<td>11.7</td>
</tr>
<tr>
<td>EU</td>
<td>7.1%</td>
<td>733.9%</td>
<td>8.4</td>
<td>12.6%</td>
<td>451.4%</td>
<td>14.6%</td>
<td>17.5</td>
</tr>
<tr>
<td>미국</td>
<td>16.2%</td>
<td>1489.6%</td>
<td>12.3</td>
<td>32.6%</td>
<td>385.0%</td>
<td>32.7%</td>
<td>19.4</td>
</tr>
</tbody>
</table>

(논문·특허지표별 주요 5개국 수준)

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국
✔ (양과 질) 논문의 영향력 및 집중도 측면에서 논문의 양과 질은 전반적으로 미국, EU가, 특히 질은 미국이 우위에 있는 것으로 나타남

〈 논문·특허의 양과 질 분석 〉

<table>
<thead>
<tr>
<th>논문의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 집중도 지수 ※</td>
</tr>
<tr>
<td>논문 영향력 지수 ※</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허의 양(집중도)과 질(영향력)</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허 집중도 지수 ※</td>
</tr>
<tr>
<td>특허 영향력 지수 ※</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 □ 일본 ■ EU ■ 미국. ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수

92
<table>
<thead>
<tr>
<th>분야별(ICT-SW) 정책 제언</th>
</tr>
</thead>
</table>

컴퓨터·소프트웨어 관련 기술

- (신개념 컴퓨팅 기술) 초기대 신경망 등의 연구는 이제 소규모 기업이나 연구실에서는 불가능하므로 이에 대한 국내 및 기업이, 연구소 등과 협력이 필수적임. 이런 연구는 다른 소규모 기업이나 연구팀에게 제공하는 것을 전제로 한 정부의 지원이 필요하다고 본.
- (신개념 컴퓨팅 기술) 국내 중소기업이 개발한 엣, 고성능컴퓨팅 등 신개념 컴퓨팅 기술은 글로벌 제조사와 경쟁해도 뒤지는 않으나, 객관적 검증을 통한 신뢰성 임증, 레퍼런스 부족으로 시장 진출이 어려음. 정부에서 국내 중소기업이 개발한 기업의 신개념 컴퓨팅 인프라를 구축하여 레퍼런스를 만들고, 객관적 검증을 통해 신뢰성을 입증하여 시장 진출 지원 필요.
- (시스템 SW 운영 및 기반 기술) AI반도체, AI 등 분야 투자 대비 거의 투자가 이루어지고 있지 않는 상황으로 보이며, AI 등 산업 지원을 위해서라도 기반 기술과 시스템 SW 운영 및 기반 기술에 대한 중요성을 재조성하고 투자 중요성을 높여야 할 것으로 판단됨.
- (시스템 SW 운영 및 기반 기술) 현재, ChatGPT 등 글로벌을 선도하고 있는 AI 기술들은 모두 대규모 컴퓨팅 인프라와 이를 가능하게 하는 시스템 SW에 기반하고 있으므로, 이를 참고하여 국내에서도 기반 마련을 위한 방안에 대해 진단한 고민이 필요한 상황임.

콘텐츠 관련 기술

- (가상·혼합현실 기술) 국내 VR/AR의 응용 역량은 글로벌 기업들과 동등 수준을 보이고 있으나, 핵심기술 역량은 다소 부족한 것으로 사료됨. 따라서 지속적이고 적극적인 국외협력을 통해 글로벌화를 위한 역량 확보 및 현지화 등을 위한 해외시장 진출을 위한 교육적 확보가 필요.
- (가상·혼합현실 기술) VR/AR의 핵심기술이라고 할 수 있는 데이터에 대한 자속적인 연구가 필요함. 최근 출시된 제품의 경우 비추어들 때, 데이터 개발을 위해서는 많은 연구개발(연구비, 연구인력 등)이 투입될 필요가 있으며, 이를 통해 VR/AR분야의 글로벌 선도가 가능할 것으로 사료됨.
- (지능형 콘텐츠제작 기술) AI학습용 데이터의 사용 및 결과물에 대한 지적 재산권 문제에 대한 명확한 정의 및 관련 법·제도 개선이 없다면 관련 연구의 위기가 예상됨. 인공지능 사용에 따른 노동시장의 변화에 대한 대응 지원 및 법·제도도 필수적임.
- (지능형 콘텐츠제작 기술) 인공지능 학습용 데이터 구축 사업으로 다양한 분야의 데이터 구축이 이루어졌음. 구축된 데이터를 기반으로 한 콘텐츠 분야로의 적응·활용 사업 추진이 필요함.
- (NUi-NUX 기술) 지역별, 국가별, 연구기관별 특성화된 분야들이 있고, 본 기술이 가지는 용익합적 특성을 고려할 때 국가 간 컨소시엄 형태로 기술개발 틀을 설정하고 해당 연구기관별 특화 참여를 통해 기술을 개발함과 동시에 해당 기술의 중요성에 대한 관심도를 높이는 식의 활동도 고려할 수 있음.
- (NUi-NUX 기술) 용익합적인 기술개발 측면이 강하고 H/W, S/W, 디자인 등을 아울러야 하는 특성이 있다 보니 이러한 연구개발 활동을 장려할 수 있는 학제간 교육 및 개발을 위한 연구사정 및 제도 등이 필요할 것으로 보임.

방송·네트워크 관련 기술

- (초연결 사물인터넷 기술) AI 산업의 급성장으로 데이터 확보와 응용 서비스 적용이 필요한 시점으로 초연결 사물인터넷은 아주 좋은 신생장 시장이 될 수 있음. 관련 인력양성과 유치를 위한 노력만도 지난적인 투자가 필요함.
- (초연결 사물인터넷 기술) 센서 등 부품개발 업체와 시스템 및 서비스개발 업체의 협력강화 방안 필요
- (지능형 실감 방송·디지털 서비스 기술) ISO/IEC MPEG 국제표준화를 위한 연구·개발 과제 확대 필요. 미국·유럽 등의 선진 대학과의 국제공동연구 과제 확대 필요.
- (지능형 실감 방송·디지털 서비스 기술) 메타버스 및 AR/MR 몰입형 미디어 서비스를 위한 연구개발 지원 확대가 필요함. 특히, 다양한 사업자들의 서비스 요소가 서로 호환이 될 수 있도록 국제표준 기술 개발 및 관련 연구·개발 지원 확대가 필요함. 또한 AR/MR 지원을 위한 스마트글래스 또는 HMD 연구·개발 지원 확대 필요함.

※ 해당분야 기술 중 국가전략기술 관련 정책제언은 IV장 참조
제 4 장
국가전략기술 12대 분야별 세부평가 결과

1. 반도체·디스플레이
2. 이차전지
3. 첨단모빌리티
4. 차세대원자력
5. 첨단바이오
6. 우주항공·해양
7. 수소
8. 사이버보안
9. 인공지능
10. 차세대통신
11. 첨단로봇·제조
12. 양자
제4장 국가전략기술 12대 분야별 세부평가 결과

1 반도체·디스플레이

• 한국의 고집적·저장 가능한 메모리 기술, 첨단패키징 기술은 우수하지만, 인공지능 반도체, 전력 반도체, 센서기술은 선도국을 추격 중
• 대부분 기술격차가 2년 범위내로 선도국과 추격국간 차별한 경쟁 중
• 디스플레이 기술은 한국이 선도하고 있고, 논문, 특허 등 연구역량 측면에서도 우수한 수준이나, 미국, 일본 등과 근소한 격차
• 국가발전 디스플레이 기술은 미국이 앞서고 있으며, 중국의 기술은 정부의 집중적인 지원 등을 통해 빠르게 상승 중

(1) 기술수준 및 격차 미국 대비 70~95% 수준으로 1~2.5년 격차

(기술수준·격차) 한국의 반도체 분야는 미국 대비 70~95%, 1~2.5년의 격차

✔ 한국의 고집적·저장 가능한 메모리 기술, 첨단패키징 기술은 세계적 수준이나, 고성능·저전력인공지능, 전력 반도체, 차세대 고성능 센서기술 선도국을 추격 중

✔ 한국의 디스플레이 분야는 세계 최고 수준이나, 미국, 일본, 중국 등과 2년 이내의 격차 범위에서 차별하게 경쟁 중

〈 국가별 기술 수준/격차 〉
(기술수준그룹) 미국이 선도하고 있고, 전력반도체, 센싱, 소부상 등에서 일본, EU, 우리나라가 기술별로 선도그룹을 형성하고 있음

한국이 디스플레이 분야 기술수준을 선도하고 있으나, 소부상 측면에서 미국, 일본도 최고 수준이며, 무기발광 디스플레이의 경우에는 우리가 미국을 추격하고 있음

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>고점적·저항기반 메모리</td>
<td>추격</td>
<td>추격</td>
<td>후발</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>고성능·저전력 인공지능 반도체</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>반도체 첨단패키징</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>전력반도체</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>차세대 고성능 센싱</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>무기발광 디스플레이</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>프리즘 디스플레이</td>
<td>최고</td>
<td>추격</td>
<td>추격</td>
<td>후발</td>
<td>추격</td>
</tr>
<tr>
<td>반도체·디스플레이 소재·부품·장비</td>
<td>최고</td>
<td>추격</td>
<td>최고</td>
<td>추격</td>
<td>최고</td>
</tr>
</tbody>
</table>

※ (선도) 기술 분야를 선도하는 그룹, (추격) 선진기술의 모방·개량이 가능한 그룹, (후발) 선진기술의 도입 적용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹
(기술수준 근거) 미국, 일본, EU 등이 우수한 원천기술을 보유하고 있으며, 고집적 저항기반 메모리 기술은 최대 1.5년 범위에서, 나머지 기술은 2.5~3.5년 범위에서 각국이 치열하게 기술 경쟁 중

(반도체·디스플레이 분야 국가별 기술수준 근거 전문가 의견)

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
</table>
| 🇰🇷 | • (반도체) 국내 반도체 기술력은 메모리 분야를 제외하고는 세계 수준에 비해 부족하며, 전력반도체와 센서 분야에서는 기술격차와 인프라가 문제
 • (디스플레이) 무기발광 디스플레이 기술과 프리즘 디스플레이 기술은 국내 기업의 기술력과 국산화에 대한 대규모 투자가 필요하며, 반도체·디스플레이 소재·부품·정비기술은 한국이 세계 최고 수준이지만 핵심 소재 및 장비의 추가 국산화가 필요 |
| 🇨🇳 | • (반도체) 고성능 저전력 인공지능 반도체 기술로서 미국에 이어 2위권의 기술력을 확보하고 있으며, 전력반도체 기술도 우리보다 높은 수준으로 나타남
 • (디스플레이) 원천기술은 다소 부족하나, 대규모 투자 및 정부의 지원으로 급속도로 성장 중 |
| 🇯🇵 | • (반도체) 고성능·저전력 인공지능 반도체기술분야에서 다소 뒤처지고 있으나, 소재·부품 정비기술은 여전히 세계 최고수준이며, 패키징, 전력반도체, 고성능 센싱 기술은 우리나라보다 우위
 • (디스플레이) 소재·부품·정비는 여전히 세계 최고 수준이나, 타 분야는 다소 저조 |
| 🇪🇺 | • (반도체) 미국과 다소 격차를 보이고 있으나, 전력반도체, 고성능 센싱기술은 미국에 이어 Top 수준
 • (디스플레이) 다양한 원천기술을 보유하고 있으나, 제조 측면에서 다소 뒤짐 |
| 🇺🇸 | • (반도체) 미국은 전력반도체, 패키징 기술, 차세대 고성능 센싱 기술 등에서도 세계적인 기술력을 보유
 • (디스플레이) 마이크로LED기술을 주도하면서, 전후방산업 경쟁력을 적극 활용 |

(2) 역량 및 경향 반도체 기술의 기초연구개발 역량의 제고가 시급

(역량) 한국의 디스플레이 분야 기초·응용연구개발 역량은 전반적으로 우수하며, 반도체 분야는 응용연구개발 역량이 우수하나, 기초연구개발 쪽은 다소 낮은 수준으로 시급한 개선이 필요

- 한국은 디스플레이 분야 모든 기술에서 우수한 연구역량을 지님
- 한국은 메모리기술을 제외하고 역량 면에서 대부분 ‘탁월’한 미국 등 주요 기술을 확보한 선도국과 차이를 보임
 ※ 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족
- 중국도 다수의 논문을 생산하지만, 전력반도체, 센싱, 소부정 등에서 기초연구개발역량이 낮은 것으로 나타남
 ※ 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

(경향) 대부분의 국가들은 연구개발 활동 경향이 ‘상승’세이다. 중국의 연구개발 활동 경향은 급상승 중

- 중국은 전력반도체, 무기발광 디스플레이, 프리즘 디스플레이 기술의 연구개발경향이 급상승
- 일본은 우수한 기술수준에도 불구하고, 메모리기술, 인공지능반도체, 고성능 센싱, 프리즘디스플레이의 연구개발 활동 경향은 ‘유지’ 수준으로 나타남
 * 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허 논문은 중국, EU, 특허는 미국·중국이 강세를 보임

분석 개요

(분석대상 논문·특허)

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논 문</th>
<th>특 허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 간수</td>
<td>33,096건</td>
<td>71,693건</td>
</tr>
<tr>
<td>고점적·저정기반 메모리</td>
<td>6,362건</td>
<td>7,276건</td>
</tr>
<tr>
<td>고성능·저전력 인공지능 반도체</td>
<td>1,447건</td>
<td>441건</td>
</tr>
<tr>
<td>반도체 첨단파키징</td>
<td>1,082건</td>
<td>2,120건</td>
</tr>
<tr>
<td>전력반도체</td>
<td>6,082건</td>
<td>7,476건</td>
</tr>
<tr>
<td>차세대 고성능 센싱</td>
<td>4,946건</td>
<td>22,701건</td>
</tr>
<tr>
<td>무기발광 디스플레이</td>
<td>5,800건</td>
<td>8,285건</td>
</tr>
<tr>
<td>프리즘 디스플레이</td>
<td>3,775건</td>
<td>16,466건</td>
</tr>
<tr>
<td>반도체·디스플레이 소재·부품·장비</td>
<td>3,602건</td>
<td>6,928건</td>
</tr>
</tbody>
</table>

(지표별 결과) 한국의 반도체·디스플레이 분야 논문 점유율은 낮으나, 높은 증가율을 보이고 있으며, 특히 영향력이나, IP4 점유율이 일본, 중국보다 높음

- 다만, 논문은 논문 점유율에 비해서 중요 논문 비율이 낮은 편이며, 논문의 양과 질과 관련된 H-Index는 주요 5개국 중 4위 수준
- 특허는 특히 영향력, 중요특허 비율, IP4 점유율 등 질적 측면에서 주요 5개국 중 3위 수준을 보임
< 분석 대상 논문·특허 연도별 추이 >

논문(2010~2021)
특허(2011~2020)

※ 한국 빨간색, 중국 검정색, 일본 청색, EU 파란색, 미국 회색

논문, 특허의 정유율, 증가율 등 양적 측면은 중국이 주요 5개국 중 1위이나, 영향력, 중요 논문 비율 등은 EU가 우위를 보이며, 특허는 전반적으로 미국이 우위를 점하고 있음

< 반도체·디스플레이 논문지표 분석 결과 >

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>11.9%</td>
<td>82.6%</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1위</td>
<td>중국, 중국, 미국, 중국, EU, 미국</td>
<td></td>
</tr>
<tr>
<td>한국</td>
<td>35.4%</td>
<td>177.4%</td>
</tr>
<tr>
<td>한국</td>
<td>10.2%</td>
<td>77.3%</td>
</tr>
<tr>
<td>한국</td>
<td>24.0%</td>
<td>50.1%</td>
</tr>
<tr>
<td>한국</td>
<td>18.6%</td>
<td>85.1%</td>
</tr>
</tbody>
</table>

< 반도체·디스플레이 특허지표 분석 결과 >

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>16.4%</td>
<td>145.7%</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1위</td>
<td>중국, 중국, EU, 미국, 중국, 미국, 미국</td>
<td></td>
</tr>
<tr>
<td>한국</td>
<td>49.8%</td>
<td>179.2%</td>
</tr>
<tr>
<td>한국</td>
<td>12.6%</td>
<td>10.3%</td>
</tr>
<tr>
<td>한국</td>
<td>7.7%</td>
<td>37.8%</td>
</tr>
<tr>
<td>한국</td>
<td>13.4%</td>
<td>55.2%</td>
</tr>
</tbody>
</table>
(점유율·영향력 분석) 한국의 논문·특허의 절대 비중은 적으나, 특허 점유율에 비해 중요 특허 비율이 높아 상대적으로 특허의 절적 수준이 높은 편

- 전반적으로 논문·특허의 점유율이 높으며, 논문은 절적 수준도 상대적으로 높으나, 특허는 점유율에 비해 중요 특허의 비율이 낮은 편. 다만, 고성능 센서기술 관련 논문·특허는 절적 수준도 높음
- 대부분 기술에서 상대적으로 중요 논문 및 특허 비율이 높으며, 특히 특허가 논문에 비해서 절적 수준이 높은 것으로 나타남
- 전력반도체 기술에서 특허 논문이 우수한 것으로 나타남
- 전력반도체 기술의 특허 측면에서 양적, 질적으로 우수함

〈 기술별 논문·특허의 점유율·영향력 〉

<table>
<thead>
<tr>
<th>논문의 점유율(가로축)·영향력(세로축)</th>
<th>특허의 점유율(가로축)·영향력(세로축)</th>
</tr>
</thead>
<tbody>
<tr>
<td>고집적·저항기반 메모리기술</td>
<td>고집적·저항기반 메모리기술</td>
</tr>
<tr>
<td>한국</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>일본</td>
<td>중국</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>고성능·저전력 인공지능 반도체기술</th>
<th>고성능·저전력 인공지능 반도체기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>일본</td>
<td>중국</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>반도체 점단 패키징기술</th>
<th>반도체 점단 패키징기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>일본</td>
<td>중국</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>논문의 점유율 (가로축) · 영향력 (세로축)</td>
<td>특허의 점유율 (가로축) · 영향력 (세로축)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>전력반도체기술</td>
<td>전력반도체기술</td>
</tr>
<tr>
<td>한국</td>
<td>일본</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>차세대 고성능 센서기술</td>
<td>차세대 고성능 센서기술</td>
</tr>
<tr>
<td>한국</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>무기발광 디스플레이기술</td>
<td>무기발광 디스플레이기술</td>
</tr>
<tr>
<td>미국</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>프리즘 디스플레이기술</td>
<td>프리즘 디스플레이기술</td>
</tr>
<tr>
<td>미국</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>반도체 디스플레이 소재 부품·장비기술</td>
<td>반도체 디스플레이 소재 부품·장비기술</td>
</tr>
<tr>
<td>미국</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

※ 한국 ▼ 중국 ▼ 일본 ▼ EU ▼ 미국, ※ 원 크기: 각 국가의 기술별 논문, 특허 체계 건수
세부증점기술	Top10 논문 발행 기관	Top10 특허 출원 기관
고장적·저항 | | |
기반 매모리 | | |
고성능·저전력 | | |
인공지능 | | |
반도체 | | |
천단 폐기장 | | |
전력반도체 | | |

(주요 연구기관) 반도체 분야에서는 서울대가, 디스플레이 분야에서는 KAIST, 경희대, 고려대, 성균관대 등이 논문을 발행하고 있음.特别声明은 삼성전자/디스플레이, 엘지전자/디스플레이가 주요 기관임.

모든 분야에서 중국의 과학원(CAS)이 가장 많은 논문을 발행 중이며 전반적으로 중국의 대학이 논문 발행에서 높은 비중을 차지함.

전력반도체, 차세대 고성능 센싱 분야에서는 한국 기업 활동이 타 분야에 비해 미약한 편임.
세부종점기술

<table>
<thead>
<tr>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>서강대학교</td>
<td>서강대학교</td>
</tr>
</tbody>
</table>

차세대 고성능 성상

- 무기발광 디스플레이
- 프리폼 디스플레이
- 반도체 디스플레이 소재·부품·장비

무기발광 디스플레이

- 중국 허난대학교
- 한국대학교
- 서강대학교

프리폼 디스플레이

- 중국 허난대학교
- 한국대학교
- 서강대학교

반도체 디스플레이 소재·부품·장비

- 중국 허난대학교
- 한국대학교
- 서강대학교

(4) 정책제언

<table>
<thead>
<tr>
<th>핵심소재 등 차세대 핵심기술 확보 노력, 디스플레이 분야 고급인력 확보 필요</th>
</tr>
</thead>
<tbody>
<tr>
<td>고집적·저장기 반도체 매모리</td>
</tr>
<tr>
<td>• 고집적·저장기 반도체의 경우 국내 반도체 기업 및 연구소·학계가 최고 수준의 기술을 보유하고 있기 때문에 국내 협력이 어느 정도 필요함이 것으로 판단됨. 매모리 관련 위크숍 및 기술 교류를 활발히 할 필요가 있고, 정부 주도의 기술 교류도 중요할 것으로 판단됨.</td>
</tr>
<tr>
<td>• 성성, 하이닉스 등 대기업에서 충분히 참여할 수 있도록 법·제도 개선 필요</td>
</tr>
<tr>
<td>• Long-term 측면의 전략으로 좀 더 논리 기술 영역의 인재 육성이 필요하지 않아야 함. 매모리 회사 및 공정 분야에 한정되지 않고, 대학 학과 및 정원, 연구실에 대한 지원 등은 보다 넓은 영역에서 이뤄져야 할 필요가 있음.</td>
</tr>
<tr>
<td>• 대기업의 연구 인프라는 아주 잘 구축되어 있으며, 연구소 및 학계, 그리고 반도체 관련 중소기업의 인프라는 아직 많이 부족한 것으로 판단됨. 정부 주도의 인프라 구축이 점점 더 중요해질 것으로 판단됨.</td>
</tr>
</tbody>
</table>

| **고성능·저전력 인공지능 반도체** |
| • 수요가 갱신하는 연구개발이 되기 위해서는 반도체 업계와 수요업계의 협력 증대가 중요함 |
| • 기업 간의 협력한 경쟁이 진행 중이므로 기업 간 국내 협력보다는 연구소와 학계를 중심으로 선진기술을 개발하고 이를 기업에 배포하는 방식이 바람직함 |
| • 실제 AI 서비스를 주도하고 있는 미국의 Hyperscaler 등과의 기술 협업으로 인공지능 반도체의 개발 방향을 실제 시장에 맞게 설정해야 함. |
| • 반도체 관련, 패리스에 대한 자원을 위해 단순히 패리스 지원도만 고민할 수 없고 산업 전반적인 연결고리를 고려해야 함. 대기업을 중심으로 반도체 패리스가 수식개연화되어 있는 현 상황을 고려 |
| • 인공지능 반도체를 만들어도 실제로 Datacenter 등에서 evaluation 및 실제 서비스에 활용하지 않으면, 앞으로의 개발 방향은 제대로 설정하기 힘들. 국내 반도체를 활용한 인프라 구축 필요 |

| **반도체 첨단패키징** |
| • 국가연구개발 혁신법상 국외기관은 연구개발기관으로써의 R&D 사업 참여가 제한적인 상황이라, 법제도 개선을 통해, 반도체 분야는 선도기술을 보유한 국외기관과의 국제협력 촉진·완화가 필요하다 판단됨 |
| • 기술개발, 특히 새로운 기초 접합기술, 이중접합 등 기초기술에 대한 연구개발의 지원이 반도체 후공정 경쟁력에 더욱 중요함 |
| • 대부분의 정부 연구비가 소재나 소자, 설계 품목만 집중되고 있음. CHIPS for America에서 4대 분야 중 한 분야를 첨단 패키징으로 한 만큼 공격적인 연구비 투자가 필요함 |
| • 중장기적 관점에서도 인력양성 및 유지가 가장 우선시 되어야 함. 그러나, 자체 인력양성보다는 반도체 소재, 고도의 기술을 보유하고 있는 국외기업과의 국제협력(일본 등)을 통해, 우리에게 부족한 기술과 인력을 확보해 나갈 필요 |

<p>| 전력반도체 |
| • 소재·소자·모듈·응용이 연계되는 사업 지원을 통해 새롭게 개발된 소자들이 지속적으로 응용에 적용될 수 있도록 인프라정비가 필요함 |
| • 전력반도체 연구는 초창기 비싼 장비비와 재료비가 많이 든 연구로서 일반적인 대학이나 마분 액체가 진행하기에는 무리가 있다. 따라서 국가적인 차원에서 많은 연구비를 지원하고 실험 가능성이 높더라도 연구적으로 시도해 볼 만한 연구를 공격적으로 연구 투자를 진행하는 것이 필요해 보임 |
| • 파워반도체 성장하체센터가 설립되어 있지만 전력반도체를 연구개발하기 위한 인프라는 여전히 부족한 상황임. 파워반도체 성장하체센터의 사설 확장과 표준공정 개발이 절실한 상황임 |
| • Si, GaN 및 SC 전력반도체에 대하여 전문적으로 파운드리 서비스를 제공할 수 있는 인프라 구축시급 |
| • 전력반도체 소자가 실제 사용 및 응용되는 분야는 전력반도체 분야이기 때문에, 전력전자 분야와 융합한 전략을 발굴하여 시너지 효과를 창출하여야 함 |</p>
<table>
<thead>
<tr>
<th>차세대 고성능 센서</th>
<th>무기발광 디스플레이</th>
<th>프리즘 디스플레이</th>
<th>반도체·디스플레이 소재·부품·장비</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 전력적 분야(우주항공, 국방 등)에서 국제협력을 통해 핵심시대 분야(광학, 항법)는 조속히 국산화 확진 필요. 기술보호와 독점력이 강한 미국보다는 오히려 협력에 개방적인 EU가 유리함.</td>
<td>- 대만, 중국 등과 국내 완공품 기업들이 패널, 화소 관련 글로벌 불규칙을 형성하여 제품을 출시하는 준비를 하고 있으나, 예를 들어 경제기미 국내 기업들은 겸채하는 패색적 공급망 구축은 물론 중국, 대만 등의 완공품 기업으로 인해 해외 공급망은 매우 불안정한 상황으로 급변하고 있음. 따라서 B2B 협력은 국제협력 프로젝트 등으로 일부 가능하지만, 기술적 협력과 부족 기술을 총각시킬 수 있는, 일본 등의 기술 선진국과 소재 및 장비 관련 기초기술을 확보하기 위한 협력이 요구됨.</td>
<td>- 국내 기술이 우위를 가지기 때문에 국제협력 촉진을 가장 낮은 순위에 두었지만, 관련 기술에 원천특허를 가진 외국기업·기관과 국제협력은 반드시 필요함.</td>
<td>- 반도체와 디스플레이 기술을 선도하고, 지속가능한 발전을 위해서 반도체 소부장과 디스플레이 소부장 관련 기술 기반도 국가적 촉매에서 아주 중요하며 설계·소자·소부장 등 자숙적인 투자 증대가 필요.</td>
</tr>
<tr>
<td>- 다양한 분야에 활용되는 센서의 특성과 대량 생산보다는 주요분 맞춤형 생산이 필요한 산업이며, 중소기업에 적합한 경우가 많음. 그러나 MEMS 센서 소자 및 IC 제작은 반도체 파운드리에서 진행해야 하고, 최종 수요자가 센서전자, LG 전자 등의 대기업인 경우가 많으므로, 대기업과 중소기업 간 경쟁구도보다는 협력하는 방안을 검토할 필요</td>
<td>- 대학·研究成果 등이 연계한 구조형태의 플랫폼 구축이 필요함. 유럽의 IMEC 같은 조직체의 필요성 (국내에 이미 존재하고 있으나 현실적인 한계점 존재)</td>
<td>- 관내 기술 선진국과 소재 및 장비 관련 기초기술을 확보하기 위한 협력이 요구됨.</td>
<td>- 최근 인공지능·생물 등의 IT분야의 인력 습득 현상과 이로 인해 업무 인력 확보가 어려운 상황임. 인력양성을 대학에서만 의존하지 않고, 정부 주도의 인력양성사업 등을 확대할 필요가 있음.</td>
</tr>
<tr>
<td>- 차세대 센서분야의 의료용, 이미지센서 분야에 집중되어 있음. 다양한 센서분야로 확장시킬 필요가 있음.</td>
<td>- 반도체 산업으로 학부 졸업생들이 파도하게 유입되고 있으며, 디스플레이 산업에서 인력 확충이 어렵고, 마이크로LED의 경우 LED 산업의 축소 등으로 대학원 이상의 전문인력 배출이 경제수 대비 매우 적어 국가적인 기술 촉진과 산업 발전을 촉진시킬 수 있는 전문대학 선정을 통한 성과급 인력 육성 확대 필요.</td>
<td>- 최근 기술간, 산업간 융합적 이슈로 인해 특정 영역의 벽이 없어졌으며, 기술 관련이 아닌 제품화 관련에서 디스플레이 기술을 활용한 영역 발굴이 필요함.</td>
<td>- 산업의 고도화로 인해 기술의 개발한 후 개발하고 있는 기술에 대해 기초기술을 보유하고 있는 학계 및 연구소의 개개 기술력이 산업계에 직접 적용되기에에는 한계가 있음. 관련 기술에 대한 비영리 인프라 구축을 통해 학계 및 연구소에서 보유하고 있는 요구기술들의 실험적 적용 가능성 검증이 가능한 인프라 구축 필요.</td>
</tr>
</tbody>
</table>
2 이차전지

- 이차전지 기술은 선도국으로서 세계 최고수준의 기술을 확보
- 중국의 연구개발활동이 급부상하고 있는 가운데, 전통적인 이차전지 강국인 일본과 산업을 내재화하고 있는 미국의 핵심기술 기초연구역량은 우리보다 우수한 편

(1) 기술수준 및 격차 리튬이온전지 분야 세계최고수준의 기술력을 보유

- (기술수준·격차) 리튬이온전지 및 핵심소재, 차세대 이차전지 소재·설계기술에서 최고수준의 기술력을 보유하고 있으며, 이차전지 모듈-시스템, 재사용·재활용 기술도 최고수준의 국가가 1년 이내 범위에서 경쟁 중

\[\text{기타계별 기술수준/격차}\]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{기술명} & \textbf{한국} & \textbf{중국} & \textbf{일본} & \textbf{EU} & \textbf{미국} \\
\hline
리튬이온전지 및 핵심소재 & 최고 & 저중 & 최고 & 저중 & 추격 \\
차세대 이차전지 소재·설계기술 & 최고 & 저중 & 최고 & 추격 & 추격 \\
이차전지 모듈-시스템 & 추격 & 추격 & 최고 & 추격 & 추격 \\
이차전지 재사용·재활용 & 추격 & 추격 & 추격 & 추격 & 추격 \\
\hline
\end{tabular}
\end{table}

※ 한국, 중국, 일본, EU, 미국 기술수준(%) [기술격차(년)]

- (기술수준그룹) 전반적으로 한국이 선도하는 가운데, 일본도 여전히 선도그룹을 형성하고 있음. 중국은 모든 분야에서 활발하게 추격 중이며, 재사용·재활용 기술 등 일부 분야는 최고수준임

\[\text{기타계별 기술수준그룹}\]

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹
[기술수준 근거] 전통적인 이차전지 기술강국인 일본과, 급속히 추격하고 있는 중국이 치열한 경쟁 중

〈 이차전지 분야 국가별 기술수준 근거 전문가 의견 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>🇰🇷</td>
<td>• 삼성에 리튬이온전지, 양극재 기술에서 최고수준이나, 소재부문이 상대적으로 약함</td>
</tr>
<tr>
<td>🇨🇳</td>
<td>• 인적·물적자원의 집중투자로 급성장중이며 일부 기술은 최고수준</td>
</tr>
<tr>
<td>🇯🇵</td>
<td>• 리튬이온 전지 원천기술, 소재부문에서 여전히 최고수준이며, 전고체 전지분야 최고 기술 보유</td>
</tr>
<tr>
<td>🇪🇺</td>
<td>• 기초·소재 연구의 강점으로 기술개발을 가속화하고 있으나, 산업기반이 부족</td>
</tr>
<tr>
<td>🇺🇸</td>
<td>• 베타리 기술의 미국내 내재화를 통해 기술력을 촉진하고 있으나, 대형제조사가 없어 공정기술이 부족</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 이차전지 연구개발역량은 우수하나, 중국의 연구개발이 급상승 중

■ (역량) 한국의 이차전지 분야 응용연구개발역량은 탁월하며, 기초연구개발은 우수한 수준

☑ 한국은 리튬이온전지 및 핵심소재, 재사용·재활용 기술에서 탁월한 응용연구개발 역량을 보이고 있으며, 모듈시스템도 우수한 기초역량을 보이고 있음

* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

☑ 중국이 급속한 추격을 하고 있으나, 차세대 소재, 셀기술과 재사용 재활용의 기초연구역량은 보통 수준

■ (경향) 대부분의 국가는 연구개발 활동경향이 '상승'세이나, 중국은 연구개발 활동경향이 급상승 중

☑ 중국의 차세대 소재/셀기술, 재사용/재활용기술의 기초연구개발역량은 보통수준이나, 연구개발 활동 경향은 급상승 중으로 나타남

* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강

〈 연구개발 역량 및 활동 경향 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한</td>
<td>중</td>
<td>일</td>
</tr>
<tr>
<td>리튬이온전지 및 핵심소재</td>
<td>우수</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>차세대 이차전지 소재·셀</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
<tr>
<td>이차전지 모듈·시스템</td>
<td>탁월</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>이차전지 재사용·재활용</td>
<td>우수</td>
<td>보통</td>
<td>우수</td>
</tr>
</tbody>
</table>
(3) 논문·특허
한국과 일본이 특허에서 강세를 보이는 가운데, 중국은 논문에서 양적 우위를 점함

분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>12,312건</td>
<td>21,990건</td>
</tr>
<tr>
<td>리듬이온전지 및 핵심소재</td>
<td>1,041건</td>
<td>9,293건</td>
</tr>
<tr>
<td>차세대 이차전지 소재·셀</td>
<td>9,901건</td>
<td>7,656건</td>
</tr>
<tr>
<td>이차전지 모듈·시스템</td>
<td>295건</td>
<td>3,444건</td>
</tr>
<tr>
<td>이차전지 재사용·재활용</td>
<td>1,075건</td>
<td>1,597건</td>
</tr>
</tbody>
</table>

분석 대상 논문·특허 연도별 추이

(지표별 결과)
한국은 상대적으로 논문의 질적 지표는 떨어지지나, 특허는 양적, 질적측면에서 우수하며, 중요특허비율, IP4 점유율은 2위 수준

- 논문의 경우, 양적 지표는 2~3위 수준이나, 질적 지표는 4~5위 수준
- 특허는 특허영향력을 제외하고 양적, 질적 지표 모두 2~3위 수준임
- 논문의 점유율, 증가율 등 양적 부문은 중국이 1위이나, 영향력 및 중요논문 비율 등은 미국이 우위를 점하고 있으며, 특허는 미국, 일본이 우위를 점하고 있음
이차전지 논문지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>13.3%</td>
<td>140.5%</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
<td>17.6%</td>
<td>44.2%</td>
</tr>
<tr>
<td>중국</td>
<td>49.2%</td>
<td>429.6%</td>
</tr>
<tr>
<td>EU</td>
<td>10.8%</td>
<td>120.4%</td>
</tr>
<tr>
<td>미국</td>
<td>9.2%</td>
<td>69.9%</td>
</tr>
</tbody>
</table>

이차전지 특허지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>32.6%</td>
<td>123.6%</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>일본</td>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
<td>46.3%</td>
<td>42.5%</td>
</tr>
<tr>
<td>중국</td>
<td>13.9%</td>
<td>247.5%</td>
</tr>
<tr>
<td>EU</td>
<td>1.2%</td>
<td>91.4%</td>
</tr>
<tr>
<td>미국</td>
<td>6.1%</td>
<td>51.5%</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석)

논문 1.2만건, 특허 2.2만건을 분석한 결과, 한국은 상대적으로 특허측면에서 양적·질적 우위를 점하고 있으나, 일부 기술은 일본의 특허가 강세임. 논문은 중국이 양·질적 측면에서 강세를 보이고 있음.

- 🇫🇷 리투아니아지 및 핵심소재기술에서 확실한 우위를 점하고 있음. 다만, 논문은 상대적으로 특허만큼의 우위는 아닌 것으로 판단됨.
- 🇰🇷 모든 분야에서 논문의 양적·질적 수준이 우수함. 차세대 소재, 섬기술의 경우 많은 특허를 생산하고 있으나, 질적수준은 다소 낮은 것으로 판단됨.
- 🇫🇷 리투아니아지에서 강세를 보이며, 차세대 섬, 소재기술, 모듈시스템, 재사용·재활용 분야에서 특허에 확실한 우위를 갖고 있음.
- 🇪🇺 논문의 영향력은 한국보다 우세에 있나, 특허의 영향력은 낮은 편.
- 🇺🇸 논문, 특허의 점유율은 낮으나, 이차전지 모듈·시스템을 제외한 대부분의 기술에서 높은 영향력을 보이고 있음.
< 기술범 논문·특허의 점유율·영향력 >

논문의 점유율(가로축)·영향력(세로축)
적응이론적지 및 핵심소재기술

특허의 점유율(가로축)·영향력(세로축)
적응이론적지 및 핵심소재기술

차세대 이차전지 소재·생기술

차세대 이차전지 소재·생기술

이차전지 모듈·시스템기술

이차전지 모듈·시스템기술

이차전지 재사용·재활용기술

이차전지 재사용·재활용기술

※ 한국 ■ 중국 ▦ 일본 □ EU ■ 미국, ※ 원 크기 : 각 국가의 기술범 논문, 특허 전체 건수
모래울치 연구기관 논문은 KIST, 한밭대가, 특히 엘지화학, 삼성SDI, 엘지에너지솔루션, 현대자동차, SK이노베이션 등 한국의 기업이 강세를 보이고 있음

논문 분야에서 중국의 과학원(CAS)을 비롯한 중국의 대학들이 강세이며, 특히 차세대 이차전지 소재-셀 기술은 1~10위가 모두 중국의 대학임

특히는 한국의 주요 기업 외에는 일본의 토요타가 전 분야에서 고루 특허를 출원하고 있으며, 스미토모, 토시바 등 기업들이 다수 포진

<table>
<thead>
<tr>
<th>세부분야</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>리튬이온전지 및 핵심소재</td>
<td></td>
<td></td>
</tr>
<tr>
<td>차세대 이차전지 소재-셀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이차전지 모듈-시스템</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이차전지 재사용-재활용</td>
<td></td>
<td></td>
</tr>
<tr>
<td>정책내용</td>
<td>배터리 분야 인력난 해소 및 시험인프라 등 중소기업 지원 필요</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| **리듬이든진지 및 핵심소재** | • 현재 이차전지 시장의 확대에 비해하여 대학 등에서 전자 분야에 공급되는 인력이 부족하고, 특히 화학·재료 공학 등의 다양한 학과 간의 융합 연구개발이 이루어지는 전자 시스템에 대한 교육이 차별적으로 이루어질 필요성이 있음
• 삼성, LG, SK 등 전자 3사에서 인력 육성 현상이 심화되어, 소부자 감소 기업 내 핵심인력을 확보하고, 지속적으로 기업 내에서 전문성을 확보하는 등의 정책이 필요함 |
| **차세대 이차전지 소재·셀** | • 국가핵심기술로 잡혀있으며, 국제협력이 원활적으로 이루어지는, 유연성을 둔 재무가 개인정보가 있을 경우, 교육 또는 연구비가 별도로 지급되는 것이 중요. 또한 코로나 이후 단절된 국제협력을 회복하기 위한 적극적 지원이 필요(일부 등은 적극적인 움직임을 보이고 있음)
• 현재 배터리 소재 인재의 대기업 흡수율이 심각한 수준이며, 인력 문제로 인하여 전자 분야의 대중국 의존도가 높아질 경우에는 기업이진 산업역량을 회복하기는 불가능할 것으로 생각됨. 따라서 연구 관련 기비와 대학원 이상의 전문인력 양성의 연구비 확대는 반드시 필요하며, TRL 단계 1-4에 대한 지원이 늘어나야 할 것으로 생각됨
• 최근 들어 소재 및 셀 전용 수준이 아닌, 간식공정, 4680셀, 전고전차전지 등 새로운 제조법별, 새로운 시스템이 중요해지고 있음. 이러한 제조법별 및 시스템 적용은 순서 연구실 수준에서 시도할 수 있지만 산업화하는데 try & error의 기회가 적음. 제조공법 선도를 위해 관련 인프라 구축으로 소재 개발 수준의 지원이 아닌 제조공법 수준의 인프라 지원이 필요함 |
| **이차전지 모듈·시스템** | • 모듈 및 시스템 분야는 제조와 단계의 기술이므로 해외 시장의 요구에 맞게 대응할 수 있으며, 국내 기술력이 우수하므로 국제협력보다는 국내 협력 생태계의 개선이 더 중요함
• EV 산업과는 달리 ESS 산업의 형제적 해소할 수 있는 법. 제도 개선이 필요(인천성 대책만 강화하여 기술개발, 제품의 가격경쟁력 향상, 해외시장 진출 등을 위한 정책은 사라짐)
• 차세대 배터리 및 고안전 배터리 모듈·팩 개발 관련 정부 주도 R&D 비용의 혁신적 확대 필요
• 모듈 및 시스템 성능 최적화, 열효율 향상, 안전성 확보, 장기 내구성 대책, 재사용·재활용 등 이차전지 모듈·시스템 산업 육성 및 세계시장에서의 초저가 기술 확보를 위한 연구비 확대가 필요
• 이차전지 분야 국내 인력은 셀 제조 분야 인력 전체 양상에 초점이 맞추어져 있음. 셀 운영 및 관리를 위한 소프트웨어·하드웨어 인력 양성이 요구됨
• 이차전지 모듈 및 시스템의 성능, 안전성 평가 인프라는 이미 여러 국내 관련 기관에 구축해 놓은 상태임. 모듈 및 시스템 효율 향상을 위한 연구개발 인프라는 다른 부품이 쌍방향 성장임. 이를테면 셀·모듈·시스템·모듈리터피터 (모터, 변속기 등) 통합형 연결체 시장인프라 구축이 필요함
• 전기차 배터리 정보를 전기차 탐색 시점부터 최종 재활용 시점까지 통합 관리할 수 있는 전기차 배터리 정보센터 운영 필요 |
| **이차전지 재사용·재활용** | • 배터리 재사용의 경우 국내 전기차 업계에서 확보가 가능한 BMS(Battery Management System) 데이터 공유가 매우 중요함. 이를 통해 효과적인 재사용 배터리 선별과 이산화단소 발생 억제가 가능
• 재활용산업이 확장되기 위해서는 필수적으로 발생되는 폐수 처리 문제를 해결할 수 있거나, 합리적으로 해결하는 제도개선이 필요함
• 중국은 정부의 지양으로 새로운 전지를 계속 개발하고 이를 실증과 함께 상용화까지 실현하는 등 명실상부하게 차세대 배터리 시장을 선도하고 있음. 지금이야말로 국가 차원에서 연구비를 집중하여 배터리 셀 분야 아니라, 소재, 원료, 장비 등 세계적인 기술력을 갖춘 기업을 잘 키워야 할 굽은다임임
• 이차전지 분야 인력이 상대적으로 부족하고 있음. 배터리와 소재 인력도 부족한데, 재활용, 재사용 인력은 인력을 구하기가 더 힘든 상황임. 본 분야의 기술경쟁력을 확보하기 위해서는 기업의 신학장학생 선발 시 정부가 일정 비용을 매칭하는 등 정부 단위의 지원책 마련이 필요해 보임
• 이차전지 재사용·재활용 산업의 확대가 예상되어 많은 중소업체들이 관련 산업에 대한 진출을 계획하고 있으나 이를 지원할 수 있는 기술력을 확보한 전문기관 및 인프라가 부족함 |
3 첨단모빌리티

• 한국의 첨단모빌리티 분야 기술수준은 세계최고 수준의 기술보유국인 미국 대비 77.5~95%로 1~3.5년의 격차
• 자율주행차량기술, 전기·수소차기술은 평가대상국 모두 2년 이내 범위에서 경쟁을 벌이고 있고, UAM기술은 미국, EU이 선도하고, 우리나라는 후발주자로 추정 중

(1) 기술수준 및 격차 미국, EU 대비 77.5~95% 수준으로 1~3.5년 격차

- 기술수준 격차) 한국의 첨단모빌리티 분야 기술수준은 세계최고 수준의 기술보유국인 미국 대비 77.5~95%로 1~3.5년의 격차
 - 전기·수소차기술은 세계적 수준이나, 자율주행차량기술, 도심항공교통(UAM)기술은 선도국을 추격 중

 (국가별 기술수준 격차)

 ![차트](image)

※ 한국 [], 중국 [], 일본 [], EU [, 미국 기술수준(%)], [기술격차(년)]

- 기술수준 그룹) 미국, EU가 선도하는 가운데, 일본, 중국, 한국이 선도국을 추격하고 있으며, UAM 분야는 우리나라가 선진기술을 도입하는 단계임

 (국가별 기술수준 그룹)

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>자율주행차량</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>도심항공교통(UAM)</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>전기·수소차</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹
(기술수준 근거) 한국과 일본은 전기차·수소차의 기술수준이 높은 편이나, 자율주행시스템, UAM 분야는 미국과, EU가 우위에 있으며, 중국은 자율주행에 강점이 있음

〈 첨단모빌리티 분야 국가별 기술수준 근거전문가의견 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>• 전기차 분야에서는 차량단위 시스템성능기술이 우수하고, 수소차 분야에서는 연료전지의 부품단위 기술은 세계최고 수준이나, 자동조종기술은 기술 선두 그룹(EU, 일본)에 비해 다소 뒤처짐. 자동차 강국으로 배터리 기반 전동화가 확산되고 있으며 수소전기차 개발이 진행</td>
</tr>
<tr>
<td>일본</td>
<td>• 전기차와 수소차 및 자율주행 기술 개발에 힘을 쏟고 있음. 국가 지원 정책과 함께, 다수의 기업들이 이 분야에서 활발한 연구 개발을 진행하고 있으며, 세계적인 배터리 제조 업체를 보유. 인공지능과 비데터와 같은 첨단 기술을 활용한 스마트 모빌리티 기술 개발에도 주력</td>
</tr>
<tr>
<td>중국</td>
<td>• 특히 수소 연료전지 기술에서 세계를 선도. 자동차 업계의 전통적 강점을 활용해 자율주행 기술 개발에도 힘쓰고 있음. 일부의 자동차 업계들은 자율주행 기술의 성장성을 위해 주주히 투자하고 연구 개발을 진행</td>
</tr>
<tr>
<td>미국</td>
<td>• 도심 항공 모빌리티 범구 측면에서는 미국보다 진도가 빠름. 또한, Volocopter, Lilium, Airbus 등의 eVTOL 개발사가 존재하며, EASA의 도심항공모빌리티 범주에, Special Conditions, MoC(Means of Compliance) 등의 진도와 미연방항공청(FAA)보다 상당한 진척이 있음</td>
</tr>
<tr>
<td>EU</td>
<td>• 다양한 완제품 개발이 진행 중이며, 완제품 개발에 기여의 투자 자금이 투입되어 완성도 높은 연구개발이 가능하다. 또한, 미 공군, 육군 등을 중심으로 실증, 요구도 대비 부족 기술 판별, 기술 개발 등의 선순환 구조가 정착되어 있음</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 전기·수소차기술의 응용연구개발 역량은 탁월

(역량) 한국의 전기·수소차기술의 응용연구개발역량은 탁월

✔ 그러나, 자율주행시스템기술, UAM기술은 역량진에서 대부분 '탁월'한 미국, EU 등 주요기술을 확보한 선도국들과 차이를 보임
* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

✔ 전기·수소차 기술의 응용연구개발역량은 미, EU 동보다 다소 앞서는 것으로 나타남

(경향) 대부분의 국가들은 연구개발 활동경향이 '상승'세이나, 자율주행시스템 기술의 중국의 연구 개발 활동경향은 급상승 중

✔ 우리나라도 상승세를 보이고 있으며, 개발 논문, 특히에서의 상대적 우위를 활용하여 연구개발활동을 기속화할 필요
* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강

〈 연구개발 역량 및 활동 경향 〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>자율주행시스템</td>
<td>보통 우수 우수</td>
<td>남 중 일 E 미</td>
<td>위</td>
</tr>
<tr>
<td>도심항공교통(UAM)</td>
<td>보통 우수 우수</td>
<td>남 중 일 E 미</td>
<td>위</td>
</tr>
<tr>
<td>전기·수소차</td>
<td>우수 보통 우수</td>
<td>남 중 일 E 미</td>
<td>위</td>
</tr>
</tbody>
</table>

116
(3) 논문·특허

논문은 중국, EU, 특허는 미국·중국이 강세를 보임

분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 간수</td>
<td>30,017건</td>
<td>39,122건</td>
</tr>
<tr>
<td>자율주행시스템</td>
<td>884건</td>
<td>382건</td>
</tr>
<tr>
<td>도심항공교통(UAM)</td>
<td>8,280건</td>
<td>11,216건</td>
</tr>
<tr>
<td>전기·수소차</td>
<td>20,863건</td>
<td>27,524건</td>
</tr>
</tbody>
</table>

(표별 결과) 한국의 논문 지표는 전반적으로 4위권이나, 특허지표는 점유율, 영향력이 3위권이며, 특허 증가율은 중국에 이어 2위권임

논문, 특허의 점유율, 증가율 등 양적 부문은 중국이 1위이며, 질적지표인 중요논문 비율도 중국이 1위임. 다만, 특허는 전반적으로 미국이 우위에 있는 것으로 나타남

참단모빌리티 논문지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5.5%</td>
<td>239.3%</td>
<td>14.6</td>
<td>5.3%</td>
<td>0.72</td>
<td>38.3</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>3.6%</td>
<td>138.6%</td>
<td>15.2</td>
<td>2.8%</td>
<td>0.75</td>
<td>27.7</td>
</tr>
<tr>
<td>중국</td>
<td>42.6%</td>
<td>615.3%</td>
<td>12.7</td>
<td>37.6%</td>
<td>0.81</td>
<td>77.3</td>
</tr>
<tr>
<td>EU</td>
<td>30.4%</td>
<td>376.9%</td>
<td>18.1</td>
<td>32.5%</td>
<td>0.94</td>
<td>87.0</td>
</tr>
<tr>
<td>미국</td>
<td>17.8%</td>
<td>320.2%</td>
<td>23.7</td>
<td>21.7%</td>
<td>0.86</td>
<td>81.3</td>
</tr>
</tbody>
</table>
첨단모빌리티 특허자표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>종요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 청구항수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>13.6%</td>
<td>2303.0%</td>
<td>6.6</td>
<td>9.1%</td>
<td>189.0%</td>
<td>10.0%</td>
<td>9.3</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>미국</td>
<td>EU</td>
<td>미국</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>12.2%</td>
<td>1754.3%</td>
<td>5.2</td>
<td>17.7%</td>
<td>300.3%</td>
<td>23.0%</td>
<td>11.6</td>
</tr>
<tr>
<td>중국</td>
<td>36.8%</td>
<td>4339.8%</td>
<td>7.3</td>
<td>17.4%</td>
<td>178.7%</td>
<td>21.6%</td>
<td>10.6</td>
</tr>
<tr>
<td>EU</td>
<td>11.3%</td>
<td>1116.0%</td>
<td>5.5</td>
<td>16.3%</td>
<td>422.3%</td>
<td>16.6%</td>
<td>16.0</td>
</tr>
<tr>
<td>미국</td>
<td>26.1%</td>
<td>1812.6%</td>
<td>9.7</td>
<td>39.6%</td>
<td>302.3%</td>
<td>28.9%</td>
<td>18.1</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석) 한국은 전기·수소차 기술 특허의 점유율 및 영향력 측면에서 평균수준에 근접하고 있으며, 도심항공교통기술도 논문, 특허의 영향력이 평균수준에 근접하고 있음

- 모든 분야에서 논문, 특허의 점유율이 높으며, 특허 논문비율에서 우위를 점하고 있으나, 종요특허의 비율은 낮은 편
- 자율주행시스템기술, 전기·수소차기술 분야의 특허에서 상대적인 강점을 갖고 있음
- 전기수소차기술, UAM기술분야에서 논문에 강점을 갖고 있음
- 자율주행시스템기술의 논문, 특허측면에서 양적, 질적으로 우수하며, 특히 UAM분야는 타 경쟁국을 압도

기술별 논문·특허의 점유율·영향력

<table>
<thead>
<tr>
<th>논문의 점유율(가로축)·영향력(세로축)</th>
<th>특허의 점유율(가로축)·영향력(세로축)</th>
</tr>
</thead>
<tbody>
<tr>
<td>자율주행시스템기술</td>
<td>자율주행시스템기술</td>
</tr>
<tr>
<td>도심항공교통(UAM)기술</td>
<td>도심항공교통(UAM)기술</td>
</tr>
</tbody>
</table>
(주요 연구기관) Top 논문의 경우 중국의 주요 대학이 상위순위를 섭렵하고 있음. 그러나, 특허의 경우, 엘지전자, 현대자동차, 기아, 토요타 등 한국과 일본의 주요 전자, 자동차 제조사가 상위 순위에 있음. 도심항공교통의 경우, 힐리웰, 보잉, GE 등 미국의 항공기 업체의 순위가 높은 편

세부중점기술	Top10 논문 발행 기관	Top10 특허 출원 기관
자율주행 시스템 | | |
도심항공교통 (UAM) | | |
전기·수소차 | | |
<table>
<thead>
<tr>
<th>정책요소</th>
<th>모빌리티 시험경중 인프라 구축, 전기·수소차 관련 법제도 개선 필요</th>
</tr>
</thead>
</table>
| 자동주행 시스템 | • MaaS 등 자동주행 서비스의 초기 활성화 및 지속적 확산을 위해 도로·교통·대중교통·택시 등 이동수단 관련 이해관계자간의 협력 필요
• 국제표준화(예, ISO/TC22&204) 및 국제법규화(예, UN/ECE WP29) 국제공조 강화
• 자율주행 기술 및 서비스 개발 이후 실 도로에서 시민들을 상대로 서비스 시범사업 등을 시행할 수 있도록 각 부처별로 파급되는 법·제도를 한곳으로 일원화하여 지원해야 함
• 자율주행 해킹기술(센서, 제어, 통신, SW램프트림 등) 내재화를 위한 연구개발비 지원 및 테스트 프레임워크 구축을 위한 신임기반 조성 강화
• 이체는 R&D 단계를 지나 상용화 경쟁의 단계에 진입하였음. 자율주행 상용화를 위한 각종 시험 경중 인프라 구축이 중요해지고 있음
• 도로교통·우산통신 관련 인프라 강화 및 단순 물리적인 인프라 구축에 가지지 않고 데이터 공유·가공·생산이 가능한 로직을 인프라 구축 |
| 도심항공교통 (UAM) | • 미국군 Agility Prime 프로그램과 같이 기존 인프라와 제도에서 십중사업을 지원할 수 있는 혁신적인 지원 필요
• 시·데이터 기반의 자율비행 등, 안전인증과 관련된 기술확보가 핵심임. 이는 미국과 유럽 등과의 긴밀한 협조와 공동연구를 통해서 확보 가능
• UAM 시장은 미국과 유럽의 수요가 많을 것으로 판단되며, 이에 따른 국제 표준(ISO, RTCA, FAA, EASA, 등)과 연계된 활동이 반드시 필요함. 따라서 정부 주도하에 국제협력 축진이 가속화되다 넓한 UAM 개발 기업들에 큰 도움이 될 것으로 판단됨
• UAM 초기 개발에서 많은 비행시험과 연구를 수행해야 하는데 국내는 군이 모든 공역을 관할하기 때문에, 비행시험에 대한 여러 가지 제약 조건이 됨. 이 외에도 여러 ESS 분야에 대한 서열, 예를 들면 수소연료 전파에 대한 항공분야 allocation 확정에 대한 지원도 적극적으로 진행한다면 보다 발전적인 개발 환경이 조성될 것으로 기대됨
• 시장 초기이므로 다소 증복성이 있는 과제에 대해서도 다양한 시도가 다양한 관점에서 이루어질 수 있도록 과제 선정 및 연구비 지원에 검토가 필요함
• UAM에 대한 관심이 높아져서 인력양성은 잘 이루어지고 있으나, UAM이 성공하기 위해서는 통신과 같이 인프라 기술도 중요하지만, 배터리, 센서와 같은 주요 구성품 핵심기술 개발이 필요하며, 이를 위해 인력양성 분야를 구체화해서 체계적으로 지원할 필요가 있음
• 현재 UAM 산업에서 기술 및 규제가 동시대발적으로 개발되고 있음. 즉, 어떤 기술이 최초적으로 생존할지, 어떤 기술이 차기적으로 입증되어 어떤 개방이나 폐지를 갖지 않음지 이므로 정정하고 할 필요가 있음. 따라서 개발비용으로 확보할 수 있는 인프라 구축은 투자 우선순위가 흥행해야 함
• 모든 지자체에 관심을 가지고 인프라 구축에 흥행하고 있으나, 직접 건설, 토목 등에 첨수할 수 있는 정책이 없음. 정부에서 인프라 구축에 대한 경제 유도보다는 구체적인 상용화 계획을 제시하고 예산이 중복투자 되지 않도록 유도할 필요가 있음
• 개발 후 상용화 위해서는 법제도 개선과 함께 도심 전용 비행장, 충전시설 등 인프라 구축이 필요 |
| 전기·수소차 | • 전기수소차 기술이 점차 성숙해 감에 따라 국가마다 전략과 기술수준이 남용되고 증가하고 있음. 이런 단계에는 국제협력을 활발히 추진하여 대한민국이 기술 주도국이 되도록 하고, 이를 바탕으로 기술의 최상위 국가에 위치할 수 있음
• 전기·수소차 보급 및 성공 향상을 위해 법제도 개선 필요
• 대기업을 제외한 중소기업의 접근은 현재 상황으로는 거의 불가능할 정도의 규제가 존재하고 있음
• 전기·수소차의 경우, 해당 분야의 연구가 자율차 등의 대규모로 추진되지 않고 있기 때문에, 해당 연구와 연결된 성과달성 및 연구결과 전달 등이 다소 비교적악임. 총체적인 연구체계 구축과 연구비 확대를 통해 해당 기술의 사회적 가치 확대가 필요
• 법제도 개선과 국내외 협력이 활발해진다면 연구비 확대는 민간 차원에서 자연스럽게 이루어짐
• 전기차의 추가적인 확산을 위해서는 충전소의 확충이 추가로 필요하며, 수소차의 경우도 마찬가지로 충전소의 확충이 선결되어야 해당하는 차량의 보급이 확산될 것임. 이는 현재 배터리 화재에 대한 객관적인 평가 인프라 확충과 초고압 수소내용용기 및 부품에 대한 평가를 위한 인프라 역시 추가로 필요한 실정임
• 인프라 구축이 적절하게 이뤄지고 있으면 지역 차별이 심화되어 지역 불균형이 심각하므로 적절한 균형 분배가 필요하다고 판단됨 |

120
4. 차세대원자력

- 우리나라의 기술수준은 선도국 미국 대비 80~86%로 4~6년의 격차를 보임
- SMART 개발경험을 토대로 iSMR개발을 통해 미국 추격 중
- 중국은 정부의 확고한 지원을 토대로 추격을 가속화하고 있으며, 신기술개발에 걸맞은 법제도 정비 필요

(1) 기술수준 및 격차: 미국 대비 80~86% 수준으로 4~6년 격차가 있음

(기술수준·격차) 한국의 차세대원자력 분야 기술수준은 세계최고 기술보유국인 미국 대비 80~86%로 4~6년의 격차

< 국가별 기술수준/격차 >

<table>
<thead>
<tr>
<th>소형모듈원자로(SMR)기술</th>
<th>선진원자력시스템·폐기물관리</th>
<th>기술수준(%)</th>
<th>기술적격차(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
</tr>
<tr>
<td>85.0</td>
<td>84.0</td>
<td>80.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 □ 일본 △ EU ■ 미국 기술수준(%), ○ 기술격차(%) (기술수준의 경우 [SMR] 기술 다음) 기술수준(%) 기술적격차(%) (기술수준의 경우 [SMR] 기술 다음)

(기술수준) 전반적으로 미국이 선도하 가운데, 한국, 중국이 빠른 속도로 추격하고 있음

< 국가별 기술수준그룹 >

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>소형모듈원자로(SMR)</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>선진원자력시스템·폐기물관리</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

* (선도) 기술수준을 선도하는 그룹, (추격) 선진기술의 모방개발이 가능한 그룹, (선도) 선진기술의 도입활용이 가능한 그룹, (추격) 연구개발능력이 취약한 그룹 (기술수준 근거) SMR의 경우 미국과 타국의 기술격차가 있는 편이나, 한국이 추격을 위해 노력하고 있으며, 폐기물 관리기술은 EU가 선도적 수준
차세대원자력 분야 국가별 기술수준 근거 전문가 의견

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>• SMART 기술개발경험을 토대로 iSMR 개발 시각단계이며, SMR분야는 미국 다음이나 상당한 격차가 있음</td>
</tr>
<tr>
<td>중국</td>
<td>• 정부의 확고한 지원으로 빠른 속도로 서구의 원전기술을 추격</td>
</tr>
<tr>
<td>일본</td>
<td>• 개념설계, 제조능력을 토대로 신형원전의 운영경험을 보유</td>
</tr>
<tr>
<td>EU</td>
<td>• SMR 개발을 진행 중이며, 폐기물관리기술은 선도국 수준</td>
</tr>
<tr>
<td>미국</td>
<td>• SMR과 선진원자력, 폐기물관리 모두 최고수준의 기술력을 유지</td>
</tr>
</tbody>
</table>

2. 역량 및 경향 원자력기술의 기초연구개발역량의 제고가 시급

(역량) 한국의 원자력분야 응용연구개발역량은 우수하나, 상대적으로 기초연구개발역량은 보통 수준으로 나타남

- SMR 기술에서 우수한 수준을 보이고 있으나, 핵심기술 확보를 위한 기초연구가 지속적으로 확장되어야 할 필요
 - * 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족
- 다수의 논문을 생산하고 있는 중국의 기초연구개발역량은 우수하며, EU도 SMR의 기초역량은 탁월

(경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이나, 일본과 EU의 선진원자력시스템·폐기물관리기술 활동경향은 ‘유지’로 나타남

- 일본, EU의 경우 우수한 연구역량에도 불구하고, 선진원자력시스템, 폐기물관리기술 활동경향은 유지 수준으로 나타남
 - * 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>기초연구개발 역량</td>
<td>한</td>
<td>중</td>
<td>일</td>
</tr>
<tr>
<td>소형모듈원자로[SMR]</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>선진원자력 시스템·폐기물관리</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>
(3) 논문·특허 논문은 중국, EU, 특허는 미국·중국이 강세를 보임

- 분석 개요

 분석 대상 논문·특허

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논 문</th>
<th>특 허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>5,494건</td>
<td>7,374건</td>
</tr>
<tr>
<td>소형모듈원자로(SMR)</td>
<td>1,171건</td>
<td>258건</td>
</tr>
<tr>
<td>선행원자로 시스템·폐기물관리</td>
<td>4,323건</td>
<td>7,116건</td>
</tr>
</tbody>
</table>

- 분석 대상 논문·특허 연도별 추이

※ ◼ 한국 ◼ 중국 ◼ 일본 ◼ EU ◼ 미국

- (지표별 결과) 한국은 논문 관련 지표는 4~5위 수준을 특허 관련 지표는 2~3위권 수준을 보이고 있음

 ◼ 논문의 경우, 논문 점유율, 중앙논문 비율은 4위 수준이며, 논문의 양과 질과 관련된 H-Index는 5위 수준
 ◼ 특허는 특허공개, 중앙특허비율이 2위권이며, 중앙특허 비율이 2위로 특허는 2~3위권의 수준을 보이고 있음
 ◼ 논문, 특허의 점유율, 증가율 등 양적 부문은 중국이 1위이나, 영향력 및 중앙논문 비율 등은 EU가 우위를 점하고 있으며, 특허는 전반적으로 미국이 우위를 점하고 있음

 논문·특허의 차체대면적 논문지표 분석 결과

<table>
<thead>
<tr>
<th>대국</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중앙논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>7.9%</td>
<td>32.2%</td>
<td>7.2</td>
<td>6.3%</td>
<td>0.43</td>
<td>17.5</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>EU</td>
<td>중국</td>
<td>EU</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>6.2%</td>
<td>2.1%</td>
<td>8.6</td>
<td>5.0%</td>
<td>0.67</td>
<td>19.5</td>
</tr>
<tr>
<td>중국</td>
<td>39.0%</td>
<td>158.2%</td>
<td>8.2</td>
<td>31.8%</td>
<td>0.66</td>
<td>36.0</td>
</tr>
<tr>
<td>EU</td>
<td>22.4%</td>
<td>55.7%</td>
<td>14.6</td>
<td>31.5%</td>
<td>0.89</td>
<td>47.0</td>
</tr>
<tr>
<td>미국</td>
<td>24.6%</td>
<td>6.0%</td>
<td>11.8</td>
<td>25.6%</td>
<td>0.74</td>
<td>43.0</td>
</tr>
</tbody>
</table>
(체계적 원자력 특허지표 분석 결과)

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>종중특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 청구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>15.3%</td>
<td>44.8%</td>
<td>1.7</td>
<td>16.7%</td>
<td>180.5%</td>
<td>8.8%</td>
<td>8.7</td>
</tr>
<tr>
<td>순위 1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>일본</td>
<td>미국</td>
<td>EU</td>
<td>미국</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>11.8%</td>
<td>2.5%</td>
<td>6.1</td>
<td>13.8%</td>
<td>306.5%</td>
<td>19.4%</td>
<td>13.4</td>
</tr>
<tr>
<td>중국</td>
<td>49.4%</td>
<td>164.1%</td>
<td>0.4</td>
<td>14.0%</td>
<td>123.0%</td>
<td>7.4%</td>
<td>7.7</td>
</tr>
<tr>
<td>EU</td>
<td>5.6%</td>
<td>31.7%</td>
<td>1.2</td>
<td>14.9%</td>
<td>802.0%</td>
<td>17.4%</td>
<td>13.6</td>
</tr>
<tr>
<td>미국</td>
<td>18.0%</td>
<td>-35.3%</td>
<td>4.4</td>
<td>40.8%</td>
<td>536.0%</td>
<td>47.2%</td>
<td>15.2</td>
</tr>
</tbody>
</table>

(적용용·영향력 분석)

한국은 전반적으로, 점유율 및 영향력이 낮은 편이나, **SMR 관련 특허의 점유율은 높은 편**임. 선진원자력시스템·폐기물관리 기술의 특허의 영향력은 각 국가간 큰 차이가 없는 편임.

- 🇰🇷 모든 분야에서 논문, 특허의 점유율이 높으나, 질적 수준은 평균을 상대히 하회
- 🇰🇷 전반적으로 점유율, 영향력이 낮은 편이나, SMR 관련 특허의 영향력이 높은 편. 다만, 특허 수 자체가 적은 점을 감안할 필요
- 🇪🇺 논문에 강점이 있으나, 특허의 점유율 및 영향력은 낮은 편임
- 🇺🇸 SMR 관련 논문의 양과 질에서 강점을 갖고 있으며, SMR 특허도 질적인 우위를 갖고 있음

(기술별 논문·특허의 점유율·영향력)

<table>
<thead>
<tr>
<th>논문의 점유율(가로축)·영향력(세로축)</th>
<th>특허의 점유율(가로축)·영향력(세로축)</th>
</tr>
</thead>
</table>

※ 한국 ▒ 중국 ▒ 일본 ▒ EU ▒ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
(주요 연구기관) 전반적으로 중국의 연구기관이 상위권에 있는 가운데, 한국의 원자력연구원, KAIST가 Top논문 발행 상위권에, 원자력연구원, 한수원이 특허의 상위권에 위치하고 있음

<table>
<thead>
<tr>
<th>세부분야</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>소형모듈 원자로 [SMR]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>한국원자력연구원, KAIST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>미국의 연구기관</td>
<td></td>
<td></td>
</tr>
<tr>
<td>한국의 연구기관</td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본의 연구기관</td>
<td></td>
<td></td>
</tr>
<tr>
<td>중국의 연구기관</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

선진원자력 시스템·폐기물관리		
한국의 연구기관, KAIST		
미국의 연구기관		
일본의 연구기관		
중국의 연구기관		

조회일자 2023.03.15
정책제안 SMR 기술혁신을 위한 인허가·규제 개선, 고급숙련인력 확보 필요

<table>
<thead>
<tr>
<th>소형모듈 원자로 [SMR]</th>
<th>선진원자력 시스템·폐기물 관리</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 신기술 적용을 위한 가장 큰 기술적 장벽은 인허가로서, 인허가 기관과 협력하여 인허가에서 요구하는 인선성을 확보하면서 각각의 규제 내용은 신기술 적용에 긍정적인 방향으로 변경되어야 할. 해당 규제기술이 변경되지 않는 경우는 신기술 적기 도입 불가하여 설계안 변경, 공정시간 등이 예상됨.</td>
<td>• 고려 18기 해체 등 단기간 다양으로 발생하는 중저층위 해체 발생폐기물 처리 및 관리 기술 향상을 위한 연구비의 확대가 지속적으로 이루어져야 함</td>
</tr>
<tr>
<td>• 다양한 신기술들의 도입이 용이한 소형모듈원자로 개발을 추진하기 위해서는 기존 대형원전에 적용되어 오던 인허가 절차의 효율화 및 실용화를 위한 법과 제도의 재정비가 필요함.</td>
<td>• 국내에 부족한 인프라 구축을 대체하면서 비용 효과적으로 R&D를 추진할 수 있는 분야를 중심으로 국제협력 추진 필요. 특히, 파이어-고속로 분야는 핵비확산 측면에서 미국과 공동연구를 지속적으로 강화 필요</td>
</tr>
<tr>
<td>• SMR은 현재의 법·제도를 적용하기 어려운 부분이 있음. 이에 대한 적절한 대응 등의 방안이 원자력계에서 합의된 후에 법·제도 개선이 필요함.</td>
<td>• 선진원자력시스템 관련 미국과 동맹, 협력 강화, 유럽 동맹, 협력 강화 프로그램 개발 및 구축, 인력교류 확대 절실. 일본, 중국 등과 관련 기술 교류 확대</td>
</tr>
<tr>
<td>• SMR은 기술이 종합된 하나의 제품으로 설계 또는 시스템 개발만으로 완성되는 것은 아님. 따라서 노후 시스템이나 성능을 책임지는 원자력 연구도 중요할 소재, 부품, 제작, 시공에 이르기까지 다양한 분야의 산업 및 연구군의 참여가 필수이며, 이러한 협력이 우리가 자랑하는 대형원전의 신화도 만든 것임.</td>
<td>• 현재 기술적차를 채우기 위해서는 미국과 중국 등과 마찬가지로 선진원자력시스템 실증사업이 필수적이며, 이를 위한 연구비 확대가 필요함</td>
</tr>
<tr>
<td>• 원자력계 리소스 및 투자 재원을 고려할 때 선택과 집중이 요구되는 상황에서 현재 다수의 국내 기관이 다수의 SMR 개발을 추진하고 있음. 정부 차원에서 조기 사업화가 가능한 노령 선행 및 국내 업계의 집중적 개발이 가능하도록 협력 관계를 구축할 필요 있음.</td>
<td>• 폐기물 처리를 적극하게 하기 위해서는 방사성폐기물 종류별, 형성별 처분(예컨대, 고선량 패퍼트의 고정화 요건, 고화 요건 등)에 관한 명확한 기준·지침이 마련되어야 함</td>
</tr>
<tr>
<td>• 인력양성을 필요하나, 28년 SMR 사업에는 신규 인력 보다, 기존 뿐만 배터링 기술자 및 설계자의 경험 및 기술이 더 시급함.</td>
<td>• 최적단 연구에서는 익 복합 연구를 통해서 신분야를 개척할 수 있는 고급인력 양성이 필수. 학부 과정보다는 석박사 고급 인력의 수급 및 지원 필요. 박사급 인력은 양성에 5-7년 소요. 따라서 중장기적으로 인성적인 인력양성 지원체계의 마련 필요</td>
</tr>
</tbody>
</table>

126
5 첨단바이오

- 모든 분야에서 미국과 EU가 기술을 선도하고 있으며, 이를 일본, 우리나라, 중국이 추격 중
- 논문, 특허면에서도 미국, EU가 우위를 갖고 있으나, 유전자·세포치료기술 및 디지털헬스데이터 분석·활용 기술에서 한국의 주요 대학이 성과를 내고 있음

(1) 기술수준 및 격차 선도국 대비 75~82.5% 수준으로 2~4.5년 격차

(기술수준·격차) 한국의첨단바이오 분야 기술수준은 세계최고 기술보유국인 미국 대비하여 75~82.5%로 2~4.5년의 격차

☑ 미국이 모든 분야에서 최고의 수준을 보이는 가운데, EU가 모든 분야에서 90% 이상의 기술수준으로 미국을 최대 1.8년 범위에서 추격 중

☑ 한국, 중국, 일본은 대부분 미국 대비 70~80%수준으로 최저 2~4.5년의 격차를 보이고 있으나, 일본의 유전자·세포치료기술은 87.5%로 비교적 높은 수준

〈 국가별-기술별 기술수준/격차 〉

<table>
<thead>
<tr>
<th>합성생물학</th>
<th>유전자·세포 치료기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>75.0</td>
</tr>
<tr>
<td>중국</td>
<td>75.0</td>
</tr>
<tr>
<td>일본</td>
<td>70.0</td>
</tr>
<tr>
<td>EU</td>
<td>90.0</td>
</tr>
<tr>
<td>미국</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>감염병 백신·치료기술</th>
<th>디지털 헬스데이터 분석·활용기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>75.0</td>
</tr>
<tr>
<td>중국</td>
<td>27.5</td>
</tr>
<tr>
<td>일본</td>
<td>75.0</td>
</tr>
<tr>
<td>EU</td>
<td>95.0</td>
</tr>
<tr>
<td>미국</td>
<td>100.0</td>
</tr>
</tbody>
</table>

※ 한국, 중국, 일본, EU, 미국 기술수준(%), • 기술격차(년)
(기술수준그룹) 미국, EU가 선도그룹을 형성하고 있으며, 한국, 중국, 일본이 선도그룹을 추격 중

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>합성생물학</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>유전자·세포 치료</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>감염병·백신·치료</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>디지털 핸스데이터 분석·활용</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

(기술수준 근거) 미국, EU가 바이오 분야를 선도하는 가운데, 한국, 중국, 일본이 구준히 추격 중

<첨단바이오 분야 국가별 기술수준 근거 전문가 의견>

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚽️</td>
<td>연구 업적은 구준히 늘고 있으며, 합성생물학 분야 우수한 연구결과와 신변종 감염병 진단기술 등에 급성장</td>
</tr>
<tr>
<td>🇰🇷</td>
<td>정부 주도의 대규모 투자와 연구 지원을 통해, 스타트업의 성장, 그리고 유전자 및 세포 치료 기술 분야에서의 선도적 역할을 있으나, 선도 기술들은 아직 미흡하고 있음. 디지털 핸스데이터 분석과 활용 기술 분야에서는 대규모 투자와 연구 성과가 있지만 글로벌 확장성이 부족</td>
</tr>
<tr>
<td>🇯🇵</td>
<td>합성생물학 분야는 발전 속도가 느리지만, 합성생물학 관련 응용 연구 분야에서는 우수한 성과를 보임. 전통적인 백신 산업에는 소극적이며, 기존의 개발 물질을 적용하는 수준. 디지털 핸스데이터 분석과 활용 기술 분야에서는 일부가 선도그룹에 위치하고 있으며, 국가적으로 지속적인 지원을 받고 있음</td>
</tr>
<tr>
<td>⚑️</td>
<td>미국보다는 연구 성과가 떨어지지만, 영국과 유럽은 합성생물학, 감염병 백신 및 치료기술, 유전자 및 세포 치료기술, 디지털 핸스데이터 분석 및 활용기술 분야에서 선도적인 위치를 갖추고 있음. 그러나 미국과 비교하여 투자 규모와 연구그룹의 규모와 수준에서는 미국에 뒤처지고 있으며, 사업화 측면에서도 아직 미국에 조금 뒤처져 있음</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 합성생물학, 감염병·백신·치료기술의 기초역량 제고 필요

(역량) 한국의 바이오 분야 연구개발역량은 대체로 우수하다. 일부 분야의 연구역량은 제고 필요

✔ 한국의 기초연구역량은 대체로 우수하나, 합성생물학 분야는 ‘보통’ 수준이며, 응용연구개발 역량의 경우 감염병백신·치료기술이 '보통' 수준
 * 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

✔ 미국은 기초, 응용 전 분야, EU는 기초연구 및 감염병·백신치료기술의 응용연구개발 역량이 탁월함

✔ 중국과 일본은 전반적으로 우수한 수준

(경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’경향이나, 한국의 합성생물학의 연구개발 활동 경향은 ‘유지’경향을 보임

✔ 미국의 경우 감염병·백신·치료기술개발의 연구개발활동이 급상승 경향을 나타남
 * 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
연구개발 역량 및 활동 경향

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국 중일미</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수 탁월</td>
</tr>
<tr>
<td>유전자·세포 치료</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수 탁월</td>
</tr>
<tr>
<td>감염병 백신·치료</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수 탁월</td>
</tr>
<tr>
<td>디지털 환스테이트 분석·활용</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수</td>
<td>우수 우수 우수 탁월</td>
</tr>
</tbody>
</table>

(3) 논문·특허

논문은 중국, EU, 특허는 미국·중국이 강세를 보임

분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>32,638건</td>
<td>65,970건</td>
</tr>
<tr>
<td>합성생물학</td>
<td>7,751건</td>
<td>18,246건</td>
</tr>
<tr>
<td>유전자·세포 치료</td>
<td>9,064건</td>
<td>7,568건</td>
</tr>
<tr>
<td>감염병 백신·치료</td>
<td>10,016건</td>
<td>14,296건</td>
</tr>
<tr>
<td>디지털 환스테이트 분석·활용</td>
<td>5,807건</td>
<td>25,860건</td>
</tr>
</tbody>
</table>

(3) 분석 대상 논문·특허 연결도별 추이

![논문(2010~2021) vs 특허(2011~2020)](chart.png)

※ 한국 🟢 중국 🟡 일본 🟤 EU 🟥 미국 🟧
(지표별 결과) 바이오 관련 논문 지표는 전반적으로 4-5위권이며, 특허 관련 지표도 4-5위권

✔ 다만, 논문 증가율은 중간에 이어 2위이며, 특허 증가율은 1위

✔ 논문의 영향력은 미국, EU에 이어 3위 수준이며 H-Index는 일본과 동일한 수준

✔ 논문, 특허의 기술력(질적) 지표는 전반적으로 미국이 우위를 점하고 있으며, 논문과 특허의 양적 지표는 중국과 EU가 우위를 점하고 있음. 일본도 유전자·세포치료기술의 우위의 영향으로 특허의 영향력이 높은 편으로 나타남

〈 첨단바이오 논문지표 분석 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>논문 점유율</td>
<td>논문 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>3.7%</td>
<td>105.7%</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
<td>4.6%</td>
<td>58.6%</td>
</tr>
<tr>
<td>중국</td>
<td>19.3%</td>
<td>202.7%</td>
</tr>
<tr>
<td>EU</td>
<td>37.4%</td>
<td>51.4%</td>
</tr>
<tr>
<td>미국</td>
<td>35.1%</td>
<td>37.7%</td>
</tr>
</tbody>
</table>

〈 첨단바이오 특허지표 분석 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>활동력(양적) 지표</th>
<th>기술력(질적) 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>특허 점유율</td>
<td>특허 증가율</td>
</tr>
<tr>
<td>한국</td>
<td>8.9%</td>
<td>1358.6%</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>7.5%</td>
<td>142.2%</td>
</tr>
<tr>
<td>중국</td>
<td>35.0%</td>
<td>999.6%</td>
</tr>
<tr>
<td>EU</td>
<td>16.5%</td>
<td>119.4%</td>
</tr>
<tr>
<td>미국</td>
<td>32.2%</td>
<td>170.1%</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석) 한국은 전반적으로 열위에 있으나, 영향력 측면에서는 유전자·세포치료 기술을 제외하면, 중국, 일본을 다소 앞서는 것으로 나타남

✔ 논문 측면에서는 미국, EU에 양적, 질적 우위는 없으며, 합성생물학, 감염병·백신치료기술, 디지털 헬스데이터 분석·활용 기술에서 특허점유율이 높게 나타남

✔ 유전자·세포치료기술의 특허의 영향력은 평균을 매우 상회하며, 그 외 기술은 논문, 특허의 점유율 및 영향력에서 평균을 하회

✔ 감염병 백신·치료기술을 제외한 나머지 분야에서 논문점유율이 가장 높으며, 특허의 점유율 및 영향력 측면에서 전반적으로 평균을 하회함

✔ 모든 기술에서 논문, 특허의 점유율과 영향력 평균을 상회하면서 세계의 연구를 선도하고 있음

130
기술별 논문·특허의 점유율·영향력

논문의 점유율(가로축)·영향력(세로축) | 특허의 점유율(가로축)·영향력(세로축)

합성생활학

유전자·세포 치료기술

감염병 백신·치료기술

디지털 첼스데이터 분석·활용기술

※ 한국 ■ 중국 □ 일본 EU ▼ 미국, ※ 원 크기: 각 국가의 기술별 논문, 특허 전체 건수
(주요 연구기관) 감염병백선·치료기술, 디지털헬스 분야 논문에서는 영국의 옵스퍼드, 합성생물학은 중국의 과학원, 유전자·세포치료기술은 캘리포니아대 등 주요 대학이 논문 발행 기관임. 특허의 경우 암젠, 화이자, 필립스 등 미국, EU의 기업이 주요 플레이어

유전자·세포치료기술은 서울대, 연세대, 카톨릭대 등 한국의 학술기관이 다수의 성과를 출원하였으며, 디지털헬스데이터분석·활용기술의 논문 발행에서 서울대가 5위에 랭크됨

<table>
<thead>
<tr>
<th>세부종점기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>합성생물학</td>
<td></td>
<td></td>
</tr>
<tr>
<td>유전자·세포 치료</td>
<td></td>
<td></td>
</tr>
<tr>
<td>감염병 백선·치료</td>
<td></td>
<td></td>
</tr>
<tr>
<td>디지털헬스데이터 분석·활용</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
정책요약
바이오파운드, 빅데이터 인프라 구축, LMO, 개인정보 관련 규제 개선

| 협성생물학 | • 국내 연구자들이 매우 제한적임. 협성생물학 연구자는 연구자인 대신, 대부분이 기존의 대사공학자/가공학자로 기술적 도약에 한계가 있음. 비록 적은 수의 협성생물학 연구자들도 상호협력 연구의 기회를 즐기기 위해 기술 발전 속도를 빠르게 할 필요가 있음. 국내 연구자들이 서로 협력할 수 있는 사업단과 같은 협력의 장이 필요함
• LMO(Living modified Organisation) 관련 법이 미국 신고등교육에 비해 보수적으로, 기술 발전 속도를 저해하고 있음. 산학 협력이 등에 대한 규제 개선이 필요함
• 국내 협성생물학 연구자 수가 매우 제한적이므로, 지금까지도 인력양성을 통해 연구자 확대가 시급함. 관련 대학원생에 대한 정책적 지원 등의 혜택이 필요함
• 협성생물학 분야의 특성상 대규모 장비와 같은 인프라가 필요한 경우가 많음. 개인 위주의 연구로만 한계가 있고, 협성생물학 분야 연구자들이 쉽게 접근, 활용할 수 있는 인프라를 구축하는 것 필요함. 연구소 등에 장비 및 인프라를 구축하고, 협성생물학 연구자들이 쉽게 활용할 수 있는 제도적 지원 필요
• 바이오파운드는 협성생물학 발전에 필수적임. LMO(Licensed Organism)는 세계 10여 개국에서 공공바이오파운드를 건설 중임. 한계에 공공바이오파운들이 확인되지 않는다면 현재 기술 수준 유지는 힘들 것이며 협성생물학의 기술발전 위협은 명확할 것임 |
| 유전자-세포치료 | • 대부분의 유전자-세포치료제 개발주체가 어家喻户바른 스마트 기업이 대부분으로 바이오생물학연구소 또는 초기 임상단계에서 국내 제약기업 및 유관기관에 대한 기술지원을 통한 신속한 개발 촉진 전략이 요구됨
• 이미 일부 전문유전자치료계의 경우 성공적 임상시험이 이루어지고 국내적 신뢰도를 구축하는 노력이 진행 중임. 공공적으로 과학적 신뢰도를 발전하기 위해서는 공공적으로 해외 제약기업들과의 LO(Licensing out)을 포함하는 협력이 필요함
| 감염병 백신치료 | • 국제협력을 초기 연구단계만에 국한하지 않고 임상시험의 경우 국제협력이 통한 임상시험을 국가에서 지원해 주는 방안을 고려
• 백신, 치료제 등은 국내에 국한된 규제뿐만 아니라 세계적으로 통용되는 글로벌 표준차원에 따라야 하므로 전국보건 연구를 위해서는 적극적인 국제협력이 필수 요건임
• 실험물질, LMO, 감염병검사와 같은 감염병 연구자들이 하나의 주체로 연구하고자 하는 동안 승인과 허락을 받아야 하는 정책 절차가 과장. 연구의 효율성과 국제적인 연구 경쟁력 축소에서 도전적인 시도를 하기에는 제약이 많음
| • 국내 감염병 연구자들의 pool이 적으므로 연구 분야도 특정 기술이나 질환에 편중되어 있음. 감염병의 질환과 핵심기술 matrix 분석을 통해 공급 분야에 대한 인력양성 전략 마련이 시급
• 백신 치료제 개발에 절대적으로 필요한 생산시설, 효능 평가체계 등이 우선적으로 마련되어 있어야 함
| • 실험물질의 기본 인프라는 최근 몇 년 동안 갖추어져 있으나, 사용과 활용, 그리고 허가료 증가 및 내부검토를 통해 네트워크를 더욱 빠르게 편의를 위한 대비가 되어야있고, 인프라형들이 더 필요한 부분이 있는지에 대한 객관적인 분석이 필요함 |
| 디지털헬스데이터 분석·활용 | • 국내 연구결과물(데이터, 소프트웨어) 등이 K-BDS/CODA 등에 잘 활용될 수 있도록 지원 필요
• 헬스케이어 데이터의 원천인 국내 의료기관의 진료정보를 분석할 수 있는 법제도 개선을 통해 기업차원의 진료 정보의 연구를 위한 분석 접근이 용이한 방향으로 법제도 개선이 필요
• 통계 분석에 국한되어 있는 국내 헬스케이어 인력양성 방향에서 벗어나 도메인 영역별 빅데이터 분석 인력 양성이 필요함
• 빅데이터 분석을 위한 디지털헬스케이어 영역별 DB 및 데이터 분석 테스트베드 구축을 통해 Domain knowledge를 가진 전문가 팀원의 다양한 분석 시도와 연구 접근이 용이한 인프라 구축이 시급 특히, 각종 데이터에 대한 비정형화를 명확히 정형화하려는 시도도 시급함 |
우주항공 · 해양

- 우주항공 기술은 세계 최고인 미국 대비 45~65%, 7~15년 격차
- 전 분야에 걸쳐 후발주자로서 세계최고기술과 격차를 보이고 있음
- 미국, EU를 중국 · 일본이 추격하고 있으며, 중국의 일부 기술은 선도국 수준을 보임

(1) 기술수준 및 격차
미국 대비 7~15년, 중국 대비 3.5~10년의 격차

<table>
<thead>
<tr>
<th>기술수준 · 격차</th>
<th>한국의 우주 · 항공 · 해양 기술수준은 세계최고 기술보유국인 미국 대비 55.0%로 11.8년의 격차를 보이고 있으며, 일본, 중국과도 평균 6~6.4년의 격차를 보임</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전반적으로 후발주자로서 해양을 제외한 우주항공분야는 미국과 10~15년의 격차를 보임</td>
</tr>
<tr>
<td></td>
<td>중국과도 해양분야를 제외할 경우 약 4.5~9.7년의 격차를 보고 있음</td>
</tr>
</tbody>
</table>

< 국가별 기술수준/격차 >

<table>
<thead>
<tr>
<th>대형 단단연소 사이를 엔진기술</th>
<th>우주 관측 · 센싱기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>한국</td>
</tr>
<tr>
<td>15.0</td>
<td>55.0</td>
</tr>
<tr>
<td>10.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>달 착륙·표면 탐사기술</th>
<th>점단 항공 가스터빈 엔진·부품기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>한국</td>
</tr>
<tr>
<td>11.5</td>
<td>45.0</td>
</tr>
<tr>
<td>15.0</td>
<td>5.0</td>
</tr>
<tr>
<td>7.0</td>
<td>76.0</td>
</tr>
<tr>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>85.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

※ 한국 | 중국 | 일본 | EU | 미국 기술수준(%) | 기술격차(년)
(기술수준근거) 미국과 EU가 선도하는 가운데, 중국과 일본이 추격하고 있으며, 우리나라는 후발주자의 위치에서 추격 중

주요평가: 중국의 달 착륙·표면 탐사기술은 선도그룹의 기술수준을 보임

가) 국가별 기술수준

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>대형 다단연소 사이클 엔진</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>우주 관측·센싱</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>달 착륙·표면 탐사</td>
<td>후발</td>
<td>선도</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>첨단 항공가스터빈 엔진·부품</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>해양자원탐사</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹

(기술수준 근거) 전반적으로 미국, EU가 선도하고 있으나, 대형 다단연소 사이클 엔진기술, 달 착륙·표면 탐사기술은 중국이 상당한 기술수준을 보임

우주항공·해양 분야 국가별 기술수준 근거 전문가 의견

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>• 한국은 전반적으로 본격적인 독자적인 우주해양기술개발의 출발선상에 있음</td>
</tr>
<tr>
<td>미국</td>
<td>• 대형 다단연소 사이클 엔진기술, 달 착륙·표면 탐사기술은 미국에 비해 상대적으로 강세</td>
</tr>
<tr>
<td>EU</td>
<td>• 첨단 항공가스터빈 엔진·부품기술은 미국에 비급기의 수준이며, 우주 관측·센싱기술, 해양 자원탐사기술에서 강세</td>
</tr>
<tr>
<td>일본</td>
<td>• 모든 기술 분야에서 최고수준의 기술력을 유지</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향

연구개발역량면에서 부족하나, 연구개발활동은 상승세

(역량) 한국의 우주항공·해양 분야 기초연구개발 및 응용연구개발 역량은 전반적으로 ‘보통’ 수준

주요평가: 역량면에서 대부분 ‘탁월’한 미국, EU, ‘우수’한 중국, 일본 등 우주항공해양 분야 주요기술을 확보한 선도국들과의 연구개발역량에서 큰 차이를 보임

* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

주요평가: 대형 다단연소 사이클 엔진기술, 달 착륙·표면 탐사기술의 기초연구개발 역량과 첨단 항공가스터빈 엔진·부품기술의 응용연구개발 역량은 ‘미흡’

(경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이며, 우주 관측·센싱기술 관련 중국의 급상승이 두드러짐

주요평가: 우리나라도 우주 관련 기술은 상승세를 보이고 있으나, 첨단 항공가스터빈엔진·부품 기술, 해양 자원탐사기술은 태국과 유사하게 유지경향을 보임

* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허

논문은 중국, EU, 특허는 미국·중국이 강세를 보임

분석 개요

분석 대상	논 문	특 허
유효 간수| 6,693건| 3,796건
대형 다단연소 사이클 엔진| 958건| 1,135건
우주 관측·센싱| 1,404건| 571건
달 착륙·표면 탐사| 1,312건| 344건
첨단 항공가스터빈 엔진·부품| 1,381건| 875건
해양자원탐사| 1,638건| 871건

(지표별 결과) 한국은 전반적으로 논문 및 특허의 모든 지표에서 타 국을 추적하고 있는 상황이나, 논문, 특허의 증가율은 3위권으로 다른 지표에 비해 준수한 편임

논문, 특허의 중류율 등 양적 부문은 중국이 1위이나, 영향력 및 중요논문 비율 등은 EU가 우위를 점하고 있으며, 특허는 전반적으로 미국이 우위를 점하고 있음
우주항공·해양 논문지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>3.3%</td>
<td>56.1%</td>
<td>8.4</td>
<td>2.6%</td>
<td>0.51</td>
<td>8.0</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>EU</td>
<td>EU</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>6.9%</td>
<td>9.3%</td>
<td>5.5</td>
<td>4.5%</td>
<td>0.68</td>
<td>11.4</td>
</tr>
<tr>
<td>중국</td>
<td>39.6%</td>
<td>89.1%</td>
<td>9.7</td>
<td>33.4%</td>
<td>0.72</td>
<td>30.8</td>
</tr>
<tr>
<td>EU</td>
<td>30.3%</td>
<td>59.1%</td>
<td>13.6</td>
<td>35.7%</td>
<td>0.84</td>
<td>34.6</td>
</tr>
<tr>
<td>미국</td>
<td>20.0%</td>
<td>6.3%</td>
<td>16.2</td>
<td>23.8%</td>
<td>0.81</td>
<td>32.6</td>
</tr>
</tbody>
</table>

우주항공·해양 특허지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>중요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 침구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5.8%</td>
<td>94.2%</td>
<td>2.8</td>
<td>5.6%</td>
<td>126.2%</td>
<td>9.1%</td>
<td>9.0</td>
</tr>
<tr>
<td>순위</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>미국</td>
<td>EU</td>
<td>미국</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>6.4%</td>
<td>107.5%</td>
<td>3.0</td>
<td>7.3%</td>
<td>227.8%</td>
<td>5.9%</td>
<td>8.2</td>
</tr>
<tr>
<td>중국</td>
<td>48.4%</td>
<td>252.9%</td>
<td>3.0</td>
<td>23.5%</td>
<td>154.0%</td>
<td>6.8%</td>
<td>7.1</td>
</tr>
<tr>
<td>EU</td>
<td>15.4%</td>
<td>31.9%</td>
<td>4.7</td>
<td>24.4%</td>
<td>495.0%</td>
<td>23.3%</td>
<td>14.0</td>
</tr>
<tr>
<td>미국</td>
<td>24.0%</td>
<td>60.3%</td>
<td>6.6</td>
<td>39.2%</td>
<td>341.4%</td>
<td>55.0%</td>
<td>17.5</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석) 타 분야에 비해 논문, 특허의 규모는 전반적으로 많지 않은 편임. 전반적으로 미국의 논문, 특허의 영향력이 평균을 상회하며, 한국은 전반적으로 양·질적으로 약체

☑ 대형 다단연소 사이클 엔진기술, 달 착륙·표면 탐사기술, 해양 자원 탐사기술의 논문이 강세이며, 이는 기술수준 결과와도 일치

☑ 논문, 특허의 양과 질 측면에서 한국보다 조금 더 나은 수준

☑ 우주 관측·센싱기술, 첨단 항공 가스터빈 엔진·부품 기술의 논문의 양·질적 측면에서 강점이 있으며, 이는 기술수준 결과와도 일치, 달 착륙·표면 탐사기술도 논문의 질적 측면에서는 감세

☑ 대형 다단연소 사이클 엔진기술, 우주 관측·센싱기술, 첨단 항공 가스터빈 엔진·부품 기술의 특허는 양·질 모두 높은 수준

기술별 논문·특허의 점유율·영향력

논문의 점유율(가로축)·영향력(세로축) 특허의 점유율(가로축)·영향력(세로축)
<table>
<thead>
<tr>
<th>논문의 점유율(가로축)·영향력(세로축)</th>
<th>특허의 점유율(가로축)·영향력(세로축)</th>
</tr>
</thead>
<tbody>
<tr>
<td>우주 관측·센싱기술</td>
<td>우주 관측·센싱기술</td>
</tr>
<tr>
<td>2</td>
<td>EU</td>
</tr>
<tr>
<td>1</td>
<td>미국</td>
</tr>
<tr>
<td>한국</td>
<td>일본</td>
</tr>
<tr>
<td>중국</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

※ 한국, 중국, 일본, EU, 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수
(주요 연구기관) Top10 논문은 중국의 주요 대학 등이 상위권에 있으며, 특허는 미국의 보안, GE, 중국 기업 등이 상위권에 있음. 한국의 항공우주연구원도 최근 5년간 가스터빈 엔진분야를 제외한 우주항공 분야에서 상위권의 특허를 다수 생산하였으며, 해양자원탐사기술은 해양과학기, 지질자원연구원 등이 좋은 성과를 내고 있음

<table>
<thead>
<tr>
<th>세부주정기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>대형 다단연소 시험엔진</td>
<td>NORTHERN POLYTECHNICAL UNIVERSITY</td>
<td>THE UNIVERSITY OF CHICAGO</td>
</tr>
<tr>
<td>우주 관측·센스</td>
<td>NATIONAL UNIVERSITY OF DEFENCE TECHNOLOGY</td>
<td>BEIJING INSTITUTE OF SPACE PROPULSION</td>
</tr>
<tr>
<td>달 착륙·표면 탐사</td>
<td>CHINA ACADEMY OF SCIENCES</td>
<td>SANYO SPACE ENGINEERING COMPANY</td>
</tr>
<tr>
<td>첨단 항공 가스터빈 엔진·부품</td>
<td>CHINA ACADEMY OF SCIENCES</td>
<td>SANYO SPACE ENGINEERING COMPANY</td>
</tr>
<tr>
<td>해양자원탐사</td>
<td>CHINA ACADEMY OF SCIENCES</td>
<td>SANYO SPACE ENGINEERING COMPANY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>논문</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td></td>
</tr>
<tr>
<td>한국항공우주연구원</td>
<td></td>
</tr>
<tr>
<td>SANYO SPACE ENGINEERING COMPANY</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF CHICAGO</td>
<td></td>
</tr>
<tr>
<td>NORTHERN POLYTECHNICAL UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>BEIJING INSTITUTE OF SPACE PROPULSION</td>
<td></td>
</tr>
<tr>
<td>CHINA ACADEMY OF SCIENCES</td>
<td></td>
</tr>
<tr>
<td>CHINA ACADEMY OF SCIENCES</td>
<td></td>
</tr>
<tr>
<td>CHINA ACADEMY OF SCIENCES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>특허</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAERIAL TECHNOLOGY CO. LTD.</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF MIAMI</td>
<td></td>
</tr>
<tr>
<td>MINING AMBARIN ELECTRIC POWER CO. LTD</td>
<td></td>
</tr>
<tr>
<td>MINING AMBARIN ELECTRIC POWER CO. LTD</td>
<td></td>
</tr>
<tr>
<td>MINING AMBARIN ELECTRIC POWER CO. LTD</td>
<td></td>
</tr>
<tr>
<td>MINING AMBARIN ELECTRIC POWER CO. LTD</td>
<td></td>
</tr>
<tr>
<td>MINING AMBARIN ELECTRIC POWER CO. LTD</td>
<td></td>
</tr>
</tbody>
</table>
| 대형 다단연소 사익률 앵진 | • 누리호 발사로 인해 국외적인 연진 개발 혁신이 가능한 분야로 변경될 것으로 보고 있으며, 해외 다단연소 개발 경험안해 고유 및 국외공동 개발을 할 수 있도록 정책적 지원이 필요함
• 국내 자체개발을 우선사업으로 보류한 후, 이미 다단연소 사익률 개발 역량을 보유하고 있는 연진국가의 기술 교류를 지속적으로 추진하며, 기술 수준을 높이려면 국가 경제성도 확보해야 함. 국가 간 협력 방안을 마련하도록 정부가 적극적으로 지원할 필요가 있음
• 다단연소사익률이 업진을 정출·산업계 학계가 공동 개발할 수 있도록 하며, 개발 경험이 통한 실책적인 참여 인력의 기술성장 및 인력양성이 되도록 하여야 함. 이를 통해 정출·보유 기술의 자연스러운 이전 및 확대로 인력과 산업화를 통해 인력 유지가 가능함
• 누리호 후속 발사와 더불어 다단연소 사익률 업진개발에 산업계가 주도적으로 참여하여 인력 채용을 확대하고, 선순환 구조로 인력 양성의 활성화도도 유도해야 함 |
| 우주 관측·센서 | • 다뉴리처럼 해외 우주 선진국의 국제협력을 통해 기술 교류 및 확보 촉진 필요
• 항후 삼우 사익률을 비롯하여 우리 우주를 미래 안보 역할을 수행, 새로운 경제적 영역으로 접근하기 위해 국가 차원의 정책적 구상과 함께 이에 맞는 연구비 증대를 추진해야 할 것임
• 우주개발 사업화를 위해서는 R&D 기반의 우주개발보다는 정부가 최종 사용자로서의 역할을 확대하고 기술을 소유하기는 기업이 소유하고 보유하는 정책으로부터의 산출물을 지속적으로 인정적으므로 구축하는 국가 차원의 역할을 앞두는 것이 필요함
• 우주사익률 및 우주개발 개발을 위한 중장기적인 계획을 성공적으로 실행하기 위해서 시스템 개발 및 인프라 구축 분야를 중심으로 예산 조절을 투입하여 핵심기술 중심으로 예산 지원이 필요
• 기업 입장에서 구축하거나 유지하기 어려운 우주환경시험 시설을 확대하고(현재 진행 중에 있는 것으로 알고 있음) 이 시설을 자활하게 사용할 수 있는 다양한 지원사례가 필요함 |
| 달 착륙·표면 탐사 | • 달표면 탐사는 달착륙선 및 발사체 기술뿐만 아니라 자원, 건설, 원자력, 에너지, 모바일리 등 다양한 분야의 기술 적립을 필요로 함. 우주사익률에서 민간 영역의 확대 확보를 위한 역량도 중요
• 우주바이의 다니로 사업에 NASA의 ShadowCam 탐색체 수용을 통한 성과의 증대와 국제사회에서 우리나라 영향력이 강화되는 것을 체험함. Gateway, Artemis, ISRU 등 국제협력 참여기회를 활용하여 우리나라 우주사익률 역량 및 달의 한국의 영향력 강화 필요
• 달표면 탐사를 위해서는 달착륙선의 검증뿐만 아니라, 달에서의 로버 임무 수행, 자원추출 시험 등을 사진에서 시험·검증하기 위한 인프라 구축이 시급함. 인프라는 국내 관련 기관·기업체뿐만 아니라 국제 협력의 기회로도 활용 가능함
• 세계는 우주사익률 특허 달표면 탐사를 과학적 목적 이외에도 자원의 추출 및 활용 등을 통한 우주경제 실현, 달 장기화, 우주 탐사를 전자기기, 식물성의 확장 등으로 인한 연구개발을 통한 공학적인 적용을 위한 핵심 탐사 촉진과 이에 필요한 정책적 지원이 필요함 |
| 첨단 항공 기스터빈 엔진·부품 | • 독자개발을 고려한 개발에는 기술 부족에 따른 임정 자원의 위기로 확장 존재하고 이에 따른 비형제적 적용이 높아질 경우를 대비한 국방협력 방안의 고려는 매우 중요함
• 성공적인 과제 진행을 위해서는 다양한 개발 모델(시제품) 제작과 시험도 필요하며, 해당 부분에 연구대회 확대가 요구됨. 많은 첨단 엔진사들의 개발 프로세스를 보면 수많은 시제품을 만들어서 시험하고, 이로부터 신뢰성 높은 엔진 개발이 이루어짐
• 15,000lbf급 이상의 엔진 개발을 위한 현재의 국내 개발 인력 등 인프라가 매우 부족함. 현재 관련 인력으로 개발착수는 기술적·자속적인 고급 엔지니어들이 공급되지 않을 경우, 결국 개발에 실패할 가능성이 매우 높음. 누리호 등과 같은 국가 주도 대형 프로젝트 등들의 장기적이고 지속적이 연구개발을 바탕으로 한 대학 참여 및 인력양성이 반드시 성취되어야 함
• 국제 인증을 받을 수 있는 전문 시험설비를 단지 구축, 엑기스, 면소기, 터빈, 열전달, 엔진시험을 통합적으로 수행할 수 있는 국가 연구시설 구축 필요 |
| 해양자원탐사 | • 선진국의 해양과학 탐사선의 체험탐사 혹은 한국정의 해외탐사선의 탐재를 통한 실험 등을 통해서, 국내 수중을 객관적으로 평가받고, 선진국 해양과학 탐사선의 장단점을 직접 체험 필요
• 해양, 자원, 탐사 등과 관련된 분야는 현장과의 접촉과 교감이 필연적으로 많이 이루어지는 3D 분야로 인식되고 있는 현실을 이해하고 극복할 수 있는 고급 인력의 배출과 정책이 완화하게 이루어질 수 있는 정책적 지원이 필요
• 유무인정수정, 유무인정수정 모션, 잠수정선단 등 탐사 강화를 위한 인프라 구축과 MRO 전문 인력 양성이 필요함 |
7 수소

• 한국의 수소분야 기술수준은 세계최고 기술보유국인 미국 대비 70~85%로 평균 3~5년의 격차
• 미국, EU, 일본을 우리나라가 추격하고 있으며, 중국의 수전하기술은 산업화 촉연에서 앞서면서, 논문, 특허 등 연구활동을 강화하는 추세

(1) 기술수준 및 격차 미국 대비 기술수준 70~85%, 3~5년의 기술격차

(기술수준·격차) 한국의 수소분야 기술수준은 세계최고 기술보유국인 미국 대비 70~85%로 평균 3~5년의 격차를 보이고 있으며, 중국보다 1년 정도 앞서는 수준

✔ 미국, EU, 일본이 선도국가로 유사한 기술수준이며, 한국이 추격하고, 중국은 후발주자로서의 지위를 가짐
✔ 한국은 중국에 비해서는 다소 앞서 있으나, 미국, 일본, EU 등과 3년 이상의 격차를 갖고 있음

〈 국가별-기술별 기술수준/격차 〉
(기술수준그룹) 미국, 일본, EU가 선도하는 가운데, 우리나라가 추격하고 있으며, 중국은 후발주자의 위치에서 추격 중

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>수소저장·운송</td>
<td>추격</td>
<td>후발</td>
<td>선도</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>수소연료장치 및 발전</td>
<td>추격</td>
<td>후발</td>
<td>선도</td>
<td>최고</td>
<td>선도</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (적정) 연구개발 능력이 취약한 그룹

(기술수준 균형) 미국, EU, 일본이 선도하는 가운데, 한국, 중국이 추격하고 있으며, 중국이 후발주자의 지위를 갖고 있으나, 수전에 수소생산의 상용화 기술은 상당한 수준으로 피막됨

<table>
<thead>
<tr>
<th>수소분야 국가별 기술수준 균형 전문가 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
</tr>
<tr>
<td>🇰🇷</td>
</tr>
<tr>
<td>🇨🇳</td>
</tr>
<tr>
<td>🇯🇵</td>
</tr>
<tr>
<td>🇪🇺</td>
</tr>
<tr>
<td>🇺🇸</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 연구개발역량면에서 부족하나, 연구개발활동은 상승세

(역량) 한국의 수소연료장치 및 발전기술은 기초, 응용개발연구 역량 모두 우수함

✔ 역량면에서 대부분 '탁월'한 미국, EU, 일본 등 수소 분야 주요기술을 확보한 선도국들과의 연구개발역량에서 차이를 보임
 * 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족
✔ 중국의 기초연구개발역량, 응용연구개발역량은 '보통' 수준이나, 논문, 특허 분석 결과를 볼 때, 단시일 내에 역량이 강화될 가능성이 있음

(경향) 대부분의 국가들은 연구개발 활동경향이 '상승'세이나, 논문, 특허활동이 활발한 중국의 추적이 예상됨

✔ 우리나라도 상승세를 보이고 있으며, 개별 논문, 특허에서의 상대적 우위를 활용하여 연구개발활동을 기속화할 필요
 * 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허 논문은 중국, EU, 특히 중국, EU가 강세를 보임

■ 분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논 문</th>
<th>특 허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 간수</td>
<td>2,864건</td>
<td>3,886건</td>
</tr>
<tr>
<td>수전해 수소생산</td>
<td>2,176건</td>
<td>1,702건</td>
</tr>
<tr>
<td>수소 저장·운송</td>
<td>5,297건</td>
<td>1,578건</td>
</tr>
<tr>
<td>수소연료전지 및 발전</td>
<td>1,120건</td>
<td>576건</td>
</tr>
</tbody>
</table>

■ (지표별 결과) 한국의 논문 및 특허 증가율은 중국에 이어 2위권이며, 수소 연료전지 특허의 높은 영향력에 따라, 특허 영향력이 1위로 나타남

✔ 다만, 논문의 경우, 논문 증가율에 비해 중요한 논문 비율이 낮은 편이며, 논문의 양과 질과 관련된 H-Index는 5위 수준

✔ 특허는 양적 점유율 및 증가율, 영향력을 제외하면 전반적으로는 5위권

✔ 논문, 특허의 점유율, 증가율 등 양적 부문은 중국이 1위이며, 질적인 지표는 미국, 중국, EU가 고루 우위를 점하고 있음
표 1. 수소 분야에서의 국가별 성과

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>종요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>6.1%</td>
<td>104.0%</td>
<td>27.2</td>
<td>6.1%</td>
<td>0.72</td>
<td>30.7</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>5.5%</td>
<td>23.1%</td>
<td>22.9</td>
<td>4.8%</td>
<td>0.67</td>
<td>31.3</td>
</tr>
<tr>
<td>중국</td>
<td>39.2%</td>
<td>185.8%</td>
<td>23.3</td>
<td>38.5%</td>
<td>0.80</td>
<td>57.3</td>
</tr>
<tr>
<td>EU</td>
<td>31.6%</td>
<td>24.4%</td>
<td>28.6</td>
<td>33.4%</td>
<td>0.93</td>
<td>70.3</td>
</tr>
<tr>
<td>미국</td>
<td>17.5%</td>
<td>-28.1%</td>
<td>32.8</td>
<td>17.2%</td>
<td>0.82</td>
<td>66.0</td>
</tr>
</tbody>
</table>

표 2. 특허 분야에서의 국가별 성과

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>종요특허 비율</th>
<th>해외출원도</th>
<th>IP4점유율</th>
<th>특허청구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>12.7%</td>
<td>101.5%</td>
<td>3.7</td>
<td>11.5%</td>
<td>165.7%</td>
<td>10.1%</td>
<td>7.6</td>
</tr>
<tr>
<td>순위</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>한국</td>
<td>중국</td>
<td>EU</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>17.6%</td>
<td>34.7%</td>
<td>2.9</td>
<td>23.2%</td>
<td>251.7%</td>
<td>28.1%</td>
<td>8.7</td>
</tr>
<tr>
<td>중국</td>
<td>52.4%</td>
<td>347.1%</td>
<td>0.7</td>
<td>29.0%</td>
<td>125.0%</td>
<td>12.4%</td>
<td>8.1</td>
</tr>
<tr>
<td>EU</td>
<td>9.9%</td>
<td>15.6%</td>
<td>3.6</td>
<td>19.7%</td>
<td>654.0%</td>
<td>32.1%</td>
<td>15.2</td>
</tr>
<tr>
<td>미국</td>
<td>7.4%</td>
<td>-14.2%</td>
<td>3.5</td>
<td>16.6%</td>
<td>470.7%</td>
<td>17.4%</td>
<td>15.9</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석) 한국의 수소연료전지 및 발전기술의 논문, 특허의 영향력이 평균을 상회하고 있음. 수천해 수소생산기술, 수소저장·운송기술의 특허의 양과 질도 평균 수준에 이르는 것으로 나타남.

 elim 수소연료전지 및 발전기술분야 논문을 제외하면 논문, 특허 점유율 점순위. 한국보다 약간 더 낮은 수준

 elim 논문, 특허의 양과 질 측면에서 한국보다 조금 더 나은 수준

 elim 중국보다는 다소 약하나 논문에서 강점이 있으며, 특허에서는 수소저장·운송기술을 제외하면 전반적으로 약세

 elim 전 분야에서 논문, 특허의 질은 평균을 상회하나, 점유율은 다소 낮음
기술별 논문·특허의 점유율·영향력

논문의 점유율(가로축)·영향력(세로축)
수전해 수소생산기술

수소저장·운송기술

수소연료전지 및 발전기술

※ 한국 ■ 중국 □ 일본 ■ EU ▼ 미국, ※ 원 크기 : 각 국가의 기술별 논문·특허 전체 건수
주요 연구기관
수전항수소생산기술, 수소저장·운송기술 논문은 중국이 1-10위를 독식하고 있으나, 특허는 일본의 도시바, 파나소닉, 한국의 대우조선양해, 현대자동차 등이 분쟁하고 있음

<table>
<thead>
<tr>
<th>세부중점기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>수전·수소생산</td>
<td>Zhejiang University (중국) 120</td>
<td>TOSHIBA(일본) 15</td>
</tr>
<tr>
<td></td>
<td>Chinese Academy of Sciences (중국) 40</td>
<td>DALIAN MET. CHEM. PHYS. (중국) 10</td>
</tr>
<tr>
<td></td>
<td>Tsinghua University (중국) 42</td>
<td>SUNRISE POWER (중국) 13</td>
</tr>
<tr>
<td></td>
<td>Harbin Institute of Technology (중국) 42</td>
<td>PANASONIC INTELLIGENT PROPERTY MANAGEMENT (중국) 10</td>
</tr>
<tr>
<td></td>
<td>Zhejiang University (중국) 42</td>
<td>COIMBRA AT J. ENERGIE ATOXIQUE ET AUX ENERGES (일본) 10</td>
</tr>
<tr>
<td></td>
<td>Nanjing University of Science and Technology (중국) 38</td>
<td>TAIKAI UNIVERSITY (중국) 11</td>
</tr>
<tr>
<td></td>
<td>Shanghai University of Technology (중국) 35</td>
<td>ASAHI KASEI (일본) 11</td>
</tr>
<tr>
<td></td>
<td>Sichuan University of Sichuan (중국) 35</td>
<td>JLU UNIVERSITY (중국) 9</td>
</tr>
<tr>
<td></td>
<td>University of Science and Technology (중국) 34</td>
<td>UNI SHANGHAI (중국) 10</td>
</tr>
<tr>
<td></td>
<td>Nankai University (중국) 32</td>
<td>UNI SHANGHAI SCIENCE & TECH (중국) 9</td>
</tr>
</tbody>
</table>

수소저장·운송	Zhejiang University (중국) 110	MAZDA KOGYO (일본) 10
	Chinese Academy of Sciences (중국) 40	CHIAGOSA KOGYO & DOHAKU (일본) 10
	Tsinghua University (중국) 42	HOKURYU (일본) 10
	Central Research Industrial Research Institute (중국) 42	MAGNETIC INTELLIGENT PROPERTY MANAGEMENT (일본) 10
	South China University of Technology (중국) 38	JAMAX LAMDA (일본) 10
	Chinese National University (중국) 38	PUMA TECHNOLOGY (일본) 10
	Sichuan University (중국) 35	KENDA (일본) 10
	Shanghai Jiao Tong University (중국) 35	ZHEJIANG UNIVERSITY (중국) 10
	Wuhan University of Science and Technology (중국) 34	ZHONGSHAN UNIVERSITY (중국) 10
	Fujian University (중국) 32	SSNINBAS (일본) 10

수소연료전지 및 발전	Wuhan University of Technology (중국) 10	PARAGONIC MANAGEMENT (일본) 5
	Tsinghua University (중국) 12	GUNING DIAN DONG (일본) 4
	University of California (중국) 12	GOR UNIVERSITY (중국) 2
	Tsinghua University (중국) 12	SHANGHAI HONGDI MOBILE REFRIGERATION & CO LTD (중국) 1
	Saha National Laboratory (중국) 9	MEDION POWER (중국) 1
	American National Laboratory (중국) 9	SHANGHAI HONGDI MOBILE REFRIGERATION & CO LTD (중국) 1
	University of Central Florida (중국) 7	HOKKYUKU INFORMATION (일본) 1
	University of Hubei (중국) 7	VIAM ARMS COMPANY (중국) 1
	Lanzhou University of Technology (중국) 4	AGROTECHNICA CO LTD (중국) 1
	University of Tsinghua (중國) 3	ZHANGJIAGANG SCIENCE & TECH (중국) 1

주요 연구기관 (2021년) | 특허 (2021년)
정책제안
수소기술 활성화를 위한 규제개선 및 실증 인프라 구축 시급

<table>
<thead>
<tr>
<th>수전해 수소생산</th>
<th>수소저장·운송</th>
<th>수소연료전지 및 발전</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 현재는 장치구성이 변경될 때마다 AH-2171 인증을 받아야 함. 고압수전해, 음이온교환막 수전해 등에 대한 인증기준이 없어 R&D 및 사업추진 시 규제샌드박스 신청이 필요한 상황임</td>
<td>• 해외 수소 별류체인 구성을 위한 국제협력 필요(해외 수소 생산·운송·국내 활용)</td>
<td>• 실효적인 국제협력이 필요한 상황: 현재 민간에서 추진하고 있는 것을 정부 차원에서 필요한 부분을 득반채해 주면서 정부와 민간이 협력해야 하는 일의 우선순위로 추진 필요</td>
</tr>
<tr>
<td>• 연구시설로서 성능시험을 위한 평가 장치의 경우 수소법은 예외로 하되, 기존 규정은 준수하도록 예외 규정 적용 필요</td>
<td>• 수소법 및 안전 관련 법제도 개선이 구축되지 않으면 기술개발 및 사업 확장 시기를 지연시킬 수 있으므로 관련 법과 제도를 유연하게 개선할 필요</td>
<td>• 수소 산업의 활성화를 위한 법·제도의 적절한 지원이 필요하나, 오히려 초기 산업에 방해가 되는 규제 및 다수의 법적 인증 등은 그 목적의 본질을 구현하면서 방해 요인으로 작용하는 것이 무엇인가? 필요할 필요사항</td>
</tr>
<tr>
<td>• 유럽, 일본, 미국, 중국, 호주 등에서 활발하게 사업이 추진 중이며, 수전해의 규모도 대형화되는 추세임. 2030년 이후 본격적으로 확대될 것으로 예측되는 그러수소 시장 진입을 위한 각국의 투자가 증가하고 기술개발이 다양하게 진행되고 있음. 이에 비해 우리나라의 MW급 실증을 약 시작하고 있는 단계로 향후 상용화 및 시장 진입을 위한 설계·운영 기술개발이 시급</td>
<td>• 수소 저장 기술에 대한 연구비 확대 필요. 그러수소 생산을 위한 수전해 기술 확보에 많은 연구비를 투자해왔으나 저장하는 기술은 외국 기업에 의존해야 함. 따라서 국내 기술로 해외 수소 도입을 위해 저장 기술 개발에도 연구비 확대 필요함</td>
<td>• 현재 시장이 미흡하여 고급인력 유치가 어렵지 않지만 5년 뒤는 인력부족이 일어날 수 있기 때문에 중장기적인 전략 필요</td>
</tr>
<tr>
<td></td>
<td>• 기술 성숙과 시장 형성을 위한 초기 단계로 현재 보유 기술의 보급을 위한 공공 영역의 인프라 구축 필요</td>
<td>• 인프라 구축 및 광범위한 활용을 위해서는 법과 제도의 개선이 필수적임. 현시점에서 범용면에서 기존의 에너지 체계를 이입하는 것은 어려우므로, 한계적으로 신재생에너지 의무할당 비율을 늘려나가며 체계화하는 과정이 필요함</td>
</tr>
</tbody>
</table>
| | • 수소 기술이 대중화되기 위해서는 인프라 구축이 중요하나, 이 부분의 진척도가 빠르지 않은 것으로 보임. 국가적인 지원이 우선되어야 산업계가 대응할 것으로 판단됨 | • 재정사업과 예산을 통한 활용 분야 확대 또는 국내 수소생산지구를 통한 활용 분야 확대가 필요. 현재 수소가격이 상승하고 있어 전 과정에서 생산단계의 비용이 증가 시 활용 분야 활성화에 적합
8 사이버보안

- 한국의 기술수준은 선도국 미국 대비 82~85%로, 1.8~3.3년의 격차를 보이고 있음
- 미국이 모든 분야 우위를 점하던 가운데, EU는 핵심기술이, 중국은 상용화가 앞서고 있으며, 논문, 특허 등 핵심기술면에서 미국의 우위가 두드러짐
- 한국의 노력은 응용기술분야에 집중되어 있으며, 중국은 풍부한 자금력으로 미국과 EU를 추격 중

(1) 기술수준 및 격차 선도국 대비 82~85%수준, 1.8~3.3년 격차로 추격 중

(기술수준·격차) 한국의 사이버보안 분야 기술수준은 세계최고 기술보유국인 미국 대비 82~85%로 1.8~3.3년의 격차를 보임

☑ 4개 기술분야 모두 미국이 선도국의 지위를 갖고 있으며, EU, 중국, 일본이 추격 중
☑ 한국의 기술수준은 일본보다는 다소 높으나, 데이터·AI보안기술, 네트워크·クラ우드 보안기술, 산업·가상
융합 보안기술은 중국보다 열위에 있음

< 국가별-기술별 기술수준/격차 >

![Diagram showing the technology level and gap in various sectors of countries.](image)

※ 한국 ■ 중국 □ 일본 EU ■ 미국 기술수준(%), ○ 기술격차(년)
(기술수준그룹) 전반적으로 미국, EU가 선도하는 가운데, 중국과 한국이 이들을 추격하고 있음. 일본은 전반적으로 후발주자의 지위에 있음.

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>데이터·AI 보안</td>
<td>추격</td>
<td>추격</td>
<td>후발</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>디지털 취약점 분석·대응</td>
<td>추격</td>
<td>추격</td>
<td>후발</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>네트워크·클라우드 보안</td>
<td>후발</td>
<td>추격</td>
<td>후발</td>
<td>추격</td>
<td>최고</td>
</tr>
<tr>
<td>산업·가상융합 보안</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개발이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹

(기술수준 근거) 한국은 응용보안에 기술개발이 집중되어 있으며, 중국은 풍부한 내수시장, 자금력을 바탕으로 미국과 EU를 추격 중

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>🇰🇷</td>
<td>• 디지털 전략, 메타버스 신산업 선도 전략 등을 범정부 협동으로 박차를 가하고 있음. 정보보호 시장에 있어 응용보안에 치중된 측면이 존재하며, 상대적으로 글로벌 시장에 비해 협소하나 정부의 제도 보완이 이루어지고 있음</td>
</tr>
<tr>
<td>🇨🇳</td>
<td>• 풍부한 내수 시장을 바탕으로 새로운 기술을 개발하고 있으며, 막강한 자금력으로 연구에 있어서 한국을 뛰어넘고 있음</td>
</tr>
<tr>
<td>⚫️</td>
<td>• 논문과 특허의 양적 활동력 및 기술력 지표 등이 상대 비교국 대비 열微에 있음. Society 5.0을 기반으로 가상 융합 기술 및 보안 개발전략을 추진 중에 있음</td>
</tr>
<tr>
<td>🇪🇺</td>
<td>• GDPR(General Data Protection Regulation)을 출발로 데이터 보안에 중점을 두고 정책 및 기술 개발에 선도적 역할을 담당하고 있음</td>
</tr>
<tr>
<td>🇺🇸</td>
<td>• 관련 분야 세계 선도기업을 보유하고 있어 글로벌 경쟁력을 확보함</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 우리나라의 전반적인 연구역량의 제고가 시급함

(역량) 한국 사이버보안기술의 응용연구개발 역량은 우수한 편이나, 기초연구개발역량은 ‘보통’ 수준임.

✔ 미국은 기초, 응용 모두, EU는 기초연구개발 역량이 탁월한 것으로 나타남
* 연구개발단계별 역량(4단계) : 탁월, 우수, 보통, 부족

✔ 중국의 연구개발역량은 우수한 편이며, 일본의 연구역량은 전반적으로 보통수준임

(경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이며, 일본과 우리나라의 일부 분야는 ‘유지’ 경향을 보이고 있음

✔ 한국의 네트워크·클라우드 보안기술과 일본의 디지털 취약점 분석·대응 기술은 연구개발 경향이 유지세임
* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허 논문, 특허에서 미국의 우위가 두드러짐

■ 분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>농야 건수</td>
<td>19,028건</td>
<td>30,860건</td>
</tr>
<tr>
<td>데이터·AI 보안</td>
<td>3,754건</td>
<td>16,957건</td>
</tr>
<tr>
<td>디지털 취약점 분석·대응</td>
<td>3,768건</td>
<td>2,243건</td>
</tr>
<tr>
<td>네트워크·클라우드 보안</td>
<td>4,010건</td>
<td>6,837건</td>
</tr>
<tr>
<td>산업·가상융합 보안</td>
<td>7,496건</td>
<td>4,823건</td>
</tr>
</tbody>
</table>

■ 분석 대상 논문·특허 연도별 추이

※ 한국 ■ 중국 □ 일본 ■ EU ■ 미국
(지표별 결과) 사이버보안 관련 논문 지표는 전반적으로 4위권이며, 특허 지표는 3위권에 해당하고, 특허 증가율은 중국에 이어 2위권

논문의 경우, 논문 점유율, 중요논문 비율 등은 EU가 우위이나, 논문 영향력은 미국이, H-Index는 중국이 우위에 있음

특허는 양적측면(점유율, 증가율)에서는 중국이, 영향력 및 중요특허, IP4 점유율 등 질적측면은 미국이 우위를 점하고 있음

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주체 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5.5%</td>
<td>56.7%</td>
<td>10.3</td>
<td>4.5%</td>
<td>0.79</td>
<td>24.5</td>
</tr>
<tr>
<td>순위 1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>2.9%</td>
<td>46.9%</td>
<td>8.2</td>
<td>1.8%</td>
<td>0.77</td>
<td>15.0</td>
</tr>
<tr>
<td>중국</td>
<td>32.3%</td>
<td>139.3%</td>
<td>11.7</td>
<td>27.4%</td>
<td>0.88</td>
<td>65.3</td>
</tr>
<tr>
<td>EU</td>
<td>34.5%</td>
<td>64.4%</td>
<td>13.9</td>
<td>35.6%</td>
<td>0.96</td>
<td>61.0</td>
</tr>
<tr>
<td>미국</td>
<td>24.8%</td>
<td>42.4%</td>
<td>21.0</td>
<td>30.8%</td>
<td>0.91</td>
<td>55.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>중요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허청구수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>8.7%</td>
<td>114.9%</td>
<td>8.8</td>
<td>11.4%</td>
<td>233.8%</td>
<td>16.1%</td>
<td>10.6</td>
</tr>
<tr>
<td>순위 1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>일본</td>
<td>4.5%</td>
<td>39.6%</td>
<td>4.7</td>
<td>5.5%</td>
<td>221.0%</td>
<td>10.5%</td>
<td>10.7</td>
</tr>
<tr>
<td>중국</td>
<td>59.1%</td>
<td>333.7%</td>
<td>7.6</td>
<td>20.2%</td>
<td>129.5%</td>
<td>12.4%</td>
<td>8.4</td>
</tr>
<tr>
<td>EU</td>
<td>6.6%</td>
<td>73.6%</td>
<td>16.6</td>
<td>14.3%</td>
<td>429.8%</td>
<td>17.3%</td>
<td>16.5</td>
</tr>
<tr>
<td>미국</td>
<td>21.2%</td>
<td>32.5%</td>
<td>17.1</td>
<td>48.7%</td>
<td>326.3%</td>
<td>43.7%</td>
<td>19.5</td>
</tr>
</tbody>
</table>

(점유율·영향력 분석) 한국의 논문 및 특허는 전반적으로 양과 질 측면에서 평균에 못 미치는 수준을 보이고 있으나, 데이터 AI보안 기술, 산업·가상융합 보안기술의 특허는 미국, EU 다음의 질적수준을 보이고 있음

논문 및 특허의 양적측면에서 우위가 있으나, 질적(영향력) 측면에서는 아직 평균 수준에 미치지 못하는 것으로 나타남

사이버보안 분야 논문, 특허의 양과 질 모두, 한국에 미치지 못하는 것으로 나타남

디지털취약점 분석·대응(공급망 보안)기술, 산업·가상융합 보안기술은 논문, 특허 모두 질적(영향력) 측면에서 평균을 상회함

디지털취약점 분석·대응(공급망 보안)기술, 산업·가상융합 보안기술을 제외하면 미국은 논문, 특허 모두 질적 측면에서 평균을 상회하며 최고수준의 위치를 보이고 있음
(주요 연구기관) 논문은 중국과 미국의 주요 대학이 상위권에 포진하고 있으며, 특히는 IBM, 화웨이, 인텔, 텔센트, 아마존 등 미국, 중국의 주요 IT 업체와 한국의 삼성전자, 전자통신연구원이 주요 플레이어임

<table>
<thead>
<tr>
<th>세부중점기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>데이터·AI 보안</td>
<td>BEIJING UNIVERSITY OF Posts and Telecomm.</td>
<td>HAMDSTAR TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>CHEMICAL SCIENCE AND TECHNOLOGY</td>
<td>ALPEN HAEWOO TECH</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY</td>
<td>BAILI GROUP HOLDING</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE UNIVERSITY</td>
<td>INTENET TEC</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF OXFORD</td>
<td>QIANGZHONG OPTO MOBILE TELECOMMUNICATIONS</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MUNICH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>디지털·취약점 분석·대응</td>
<td>BEIJING UNIVERSITY OF Posts and Telecomm.</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>TENCENT TEC SHANGHAI</td>
</tr>
<tr>
<td></td>
<td>NORTH CAROLINA STATE UNIVERSITY</td>
<td>VIVANZA TEC</td>
</tr>
<tr>
<td></td>
<td>NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY</td>
<td>BEIJING GROUP TEC</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MAASTRICHT</td>
<td>ALPEN HAEWOO TECH</td>
</tr>
<tr>
<td></td>
<td>KAGAWA UNIVERSITY</td>
<td>AMAZON TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF KYUSHU</td>
<td>SUEISHO</td>
</tr>
<tr>
<td></td>
<td>OSAKA UNIVERSITY</td>
<td>UNIVERSE</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MUNICH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>네트워크·클라우드 보안</td>
<td>KOREA UNIVERSITY</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY</td>
<td>BAILI GROUP HOLDING</td>
</tr>
<tr>
<td></td>
<td>BEIJING UNIVERSITY OF Posts and Telecomm.</td>
<td>INTENET TEC</td>
</tr>
<tr>
<td></td>
<td>NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY</td>
<td>QIANGZHONG OPTO MOBILE TELECOMMUNICATIONS</td>
</tr>
<tr>
<td></td>
<td>KAIGAKU UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF SOUTHERN CALIFORNIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MUNICH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF FRANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CHINA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MUNICH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업·가상융합 보안</td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>KOREA UNIVERSITY</td>
<td>BAILI GROUP HOLDING</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF TAIWAN</td>
<td>INTENET TEC</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF OXFORD</td>
<td>QIANGZHONG OPTO MOBILE TELECOMMUNICATIONS</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MUNICH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

153
(4) 정책제언 사이버보안 분야 고급인력 이탈 방지, 융합적 생태계 구축 필요

<table>
<thead>
<tr>
<th>데이터·AI 보안</th>
<th>네트워크·クラウド 보안</th>
<th>산업·가상융합 보안</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AI 학습 시 프라이버시 이슈 등 법·제도적 이슈들이 존재함. 마이데이터 등 데이터가 개방·공유될 수 있는 정책과 제도 개선 확대 필요</td>
<td>• 공공기관의 인간 클라우드 서비스 이용 시 CSAP 인증 획득 서비스로 제한되어 있으며, 최근 SaaS 간편 인증 시행이 되어 지속적인 제도 운영 모니터링 및 필요시 개선방안 도출 필요</td>
<td>• 융합보안기술에 대한 전략적인 투자 확대가 필요함. 미국 독일 등과의 기술격차를 줄이기 위해 융합 보안 산업에 대한 기반 기술개발이 급輪함</td>
</tr>
<tr>
<td>• 국내 사이버보안 업체들은 대부분 경제적으로 데이터·AI 등 핵심적인 기술을 도입하기 위한 투자 여력이 없어 정부 R&D 사업을 통해 기업들이 혁신기술을 도입하여 클로벌 경쟁력을 확보할 수 있도록 지원 필요</td>
<td>• 공공기관의 인간 클라우드 서비스 및 제품의 중심적이고 신뢰성을 확보하기 위해 시험·검증 환경 제공이 필요. 이를 위해서는 자체적인 클라우드 시험 환경뿐만 아니라, 다양한 퍼블릭 클라우드 서비스 제공자들과의 협력 체계를 통한 환경 제공 및 기술지원이 필요</td>
<td>• 융합보안 산업 분야를 전공하거나, 관련 개발 경험이 있는 인력이 매우 부족하여 대학원을 중심으로 성과 고급인력 양성이 요구</td>
</tr>
<tr>
<td>• 데이터·AI 보안은 기존 사이버보안 기술과 비데이터·AI 기술이 융합된 기술로 관련 전문인력이 부족한 실정임. 기술 분야 간 인력교류 및 협력과 전문인력을 양성할 수 있는 정책이 필요함</td>
<td>• 국가 클라우드 보안기술 및 제품의 공산격과 신뢰성을 확보하기 위해 시험·검증 환경 제공이 필요. 이를 위해서는 자체적인 클라우드 시험 환경뿐만 아니라, 다양한 퍼블릭 클라우드 서비스 제공자들과의 협력 체계를 통한 환경 제공 및 기술지원이 필요</td>
<td>• 다양한 산업에 융합 보안 기술을 하기 위한 인프라 구축이 필요함. 최신 관련 자료, 소스, 관련 전문가간의 협업을 할 수 있는 인프라 등이 필요함</td>
</tr>
<tr>
<td>• 디지털 취약점 분석·대응</td>
<td>• 체로트라스트의 개념을 각 기관의 네트워크 환경과 보유하고 있는 데이터에 적용하기 위해서는 법·제도적인 시행 원칙이 수립되어야 네트워크·クラウド 환경에서 환선 없이 안전한 구축이 가능함으로 보임</td>
<td>• 융합보안 산업별 및 산업간에 필요한 기술 활용을 하기 위한 인프라 구축이 필요함. 기술 생성자 및 사용자 간의 협업을 할 수 있는 인프라 등이 필요함</td>
</tr>
</tbody>
</table>

- 투자 여력이 없어 정부 R&D 사업을 통해 기업들이 혁신기술을 도입하여 클로벌 경쟁력을 확보할 수 있도록 지원 필요
- 국가 클라우드 보안기술 및 제품의 공산격과 신뢰성을 확보하기 위해 시험·검증 환경 제공이 필요. 이를 위해서는 자체적인 클라우드 시험 환경뿐만 아니라, 다양한 퍼블릭 클라우드 서비스 제공자들과의 협력 체계를 통한 환경 제공 및 기술지원이 필요
9 인공지능

- 인공지능 기술은 미국이 세계최고 수준인 가운데, 중국이 급성장
- 우리나라는 선도국 대비 70~85% 수준으로 1.8~3년의 격차가 있으며, 소프트웨어분야 인프라 경쟁력이 빈약
- 중요도는 EU가, 중용특허는 양적으로는 중국, 질적으로는 미국이 강세를 보임

(1) 기술수준 및 격차 선도국 미국 대비 70~85% 수준으로 1.8~3년 격차

[기술평가 및 기술수준] 한국의 인공지능 기술수준은 세계최고 기술보유국인 미국 대비 70~85%로 1.8~3년의 격차

☐ 미국이 선도하는 가운데, 중국이 일부분야에서는 미국보다 발전된 결과를 보이며 멸착격하고 있음
☐ 우리나라의 1.8~3년의 범위에서 추격하고 있으나, 소프트웨어 인프라 및 데이터 활용 측면에서 추격이 필요함

< 국가별 기술 수준 / 격차 >

<table>
<thead>
<tr>
<th>효율적 학습 및 AI 인프라 (SW/HW)</th>
<th>고도화기술</th>
<th>혁신 AI 모델형-의사결정 (인지-판단-추론) 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>중국</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>일본</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>EU</td>
<td>85.0</td>
<td>85.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>산업 활용·혁신 AI 기술</th>
<th>연차 산업 AI 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>80.0</td>
</tr>
<tr>
<td>중국</td>
<td>93.5</td>
</tr>
<tr>
<td>일본</td>
<td>1.0</td>
</tr>
<tr>
<td>EU</td>
<td>85.0</td>
</tr>
</tbody>
</table>

※ 한국, 중국, 일본, EU, 미국 기술수준(%), 기술격차(년)
■ 〈기술수준그룹〉 미국이 선도하는 가운데, 중국이 추격하고 있으며, 일부 분야는 미국을 능가하는 수준임. 우리나라는 후발주자이나, 추격을 가속화하고 있음

<table>
<thead>
<tr>
<th>국가별 기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술명</td>
</tr>
<tr>
<td>효율적 학습 및 AI인프라 고도화</td>
</tr>
<tr>
<td>첨단 AI 모델링·의사결정(인자·판단·추론)</td>
</tr>
<tr>
<td>산업 활용·혁신 AI</td>
</tr>
<tr>
<td>안전·신뢰 AI</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개발이 가능한 그룹, (후발) 선진기술의 도입적용이 가능한 그룹, (뒤) 연구개발 능력이 취약한 그룹

■ 〈기술수준 근거〉 한국은 소프트웨어 인프라 경쟁력이 빈약한 편이며, 중국은 국가 주도의 대규모 투자와 데이터 활용으로 일부 분야에서는 미국에 근접한 것으로 평가됨

<table>
<thead>
<tr>
<th>인공지능 분야 국가별 기술수준 근거 전문가 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
</tr>
<tr>
<td>☭</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 전반적인 인공지능분야의 기초연구역량 강화가 시급

■ 〈역량〉 한국의 인공지능기초연구역량은 일본과 함께 전반적으로 보통 수준으로 미국, 중국, EU에 비해 상대적으로 부족

☑ 한국은 응용연구개발역량 측면에서는 우수한 역량이 있지만, 기초연구개발은 전 분야에서 ‘보통’ 수준

* 연구개발단계별 역량(5단계) : 탐험, 우수, 보통, 미흡, 부족

☑ 미국은 모든 분야에서 탁월하며, 중국도 일부 응용연구개발역량은 탁월한 수준임

■ 〈경향〉 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이나, 중국과 미국은 일부 분야에서 급상승하고 있음

☑ 일본은 상대적으로 첨단AI모델링·의사결정기술에서 유지경향을 보이고 있음

* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허 논문은 중국, EU, 특히 미국·중국이 강세를 보임

분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>6,326건</td>
<td>5,785건</td>
</tr>
<tr>
<td>효율적 학습 및 AI인프라(SW/HW) 고도화기술</td>
<td>2,014건</td>
<td>2,383건</td>
</tr>
<tr>
<td>첨단 AI 모델링·의사결정(인지·판단·추론)기술</td>
<td>1,407건</td>
<td>1,806건</td>
</tr>
<tr>
<td>산업 활용·혁신 AI기술</td>
<td>1,887건</td>
<td>1,061건</td>
</tr>
<tr>
<td>안전·신뢰 AI기술</td>
<td>1,018건</td>
<td>535건</td>
</tr>
</tbody>
</table>

(분석 대상 논문·특허 연도별 추이)

■ (지표별 결과) 한국은 공지능 관련 논문 점유율은 낮으나, 증가율은 1위이며, 특허는 점유율과 증가율이 2위권임

☒ 다만, 논문, 특허의 영향력의 경우 5위권으로 낮은 편이며, 논문의 H-index는 4위권임

☒ 특허의 점유율, 증가율 등 양적 부문은 중국이 1위이며, 영향력 및 중요특허 비율 등은 미국, 중국 EU가 우위를 점하고 있음

〈 인공지능 논문지표 분석 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요특허 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>4.0%</td>
<td>3290.6%</td>
<td>10.3</td>
<td>3.2%</td>
<td>0.72</td>
<td>11.8</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>EU</td>
<td>한국</td>
<td>미국</td>
<td>EU</td>
<td>EU</td>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
<td>3.9%</td>
<td>1441.7%</td>
<td>11.8</td>
<td>2.6%</td>
<td>0.78</td>
<td>11.5</td>
</tr>
<tr>
<td>중국</td>
<td>28.2%</td>
<td>1426.2%</td>
<td>11.2</td>
<td>23.7%</td>
<td>0.89</td>
<td>42.5</td>
</tr>
<tr>
<td>EU</td>
<td>37.5%</td>
<td>722.2%</td>
<td>13.9</td>
<td>37.1%</td>
<td>0.96</td>
<td>39.8</td>
</tr>
<tr>
<td>미국</td>
<td>26.4%</td>
<td>629.1%</td>
<td>19.4</td>
<td>33.5%</td>
<td>0.91</td>
<td>34.5</td>
</tr>
</tbody>
</table>

〈 인공지능 특허지표 분석 결과 〉

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>중요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허청구항수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>22.8%</td>
<td>6335.8%</td>
<td>0.8</td>
<td>26.8%</td>
<td>168.5%</td>
<td>35.1%</td>
<td>7.1</td>
</tr>
<tr>
<td>순위</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>한국</td>
<td>EU</td>
</tr>
<tr>
<td>일본</td>
<td>3.2%</td>
<td>967.5%</td>
<td>5.8</td>
<td>5.2%</td>
<td>197.0%</td>
<td>10.9%</td>
<td>14.2</td>
</tr>
<tr>
<td>중국</td>
<td>58.0%</td>
<td>1219.8%</td>
<td>2.1</td>
<td>33.0%</td>
<td>124.8%</td>
<td>15.5%</td>
<td>6.4</td>
</tr>
<tr>
<td>EU</td>
<td>3.3%</td>
<td>340.3%</td>
<td>3.0</td>
<td>6.4%</td>
<td>396.8%</td>
<td>13.6%</td>
<td>19.3</td>
</tr>
<tr>
<td>미국</td>
<td>12.7%</td>
<td>778.2%</td>
<td>9.2</td>
<td>28.6%</td>
<td>271.5%</td>
<td>24.9%</td>
<td>18.8</td>
</tr>
</tbody>
</table>

■ (점유율·영향력 분석) 한국의 첨단AI 모델링·의사결정 기술, 산업활용·혁신AI기술의 논문 영향력은 평균 수준이며, 특허의 양적·비중도 높은 편

☒ 中国 특허 점유율이 우위에 있으며, 논문 질적 수준도 높은 편

☒ 日本 논문, 특허 모두 전반적으로 약세이나, 첨단AI모델링·의사결정 기술은 질적수준이 평균을 상회

☒ 中国 논문은 발행규모 및 양적·질적 측면에서 우수하나, 특허는 약세

☒ 美国 미국의 논문, 특허는 대부분 분야에서 양적규모에 비해 상대적으로 질적으로 우수한 것으로 나타남
 attraverso l'analisi dei dati.
(주요 연구기관) 논문은 중국 과학원(CAS) 등 중국의 주요 대학 및 헤리티지, 스탠퍼드 등 미국의 주요 대학이 상위권에 있으며, 한국의 연세대 등도 순위에 있음을. 특히의 경우 텐센트, 바이두, 화웨이, IBM, 인텔 등 중국과 미국의 IT기업이 주요 플레이어이며, 한국의 엘지, 삼성전자 등 대기업과 딥러레인지에이아이 등 스타트업들이 선정하고 있음.

<table>
<thead>
<tr>
<th>세부종점기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>효율적 학습 및 AI인프라 고도화</td>
<td></td>
<td></td>
</tr>
<tr>
<td>청년 AI 모델링의 의사 결정(인지판단-추론)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>신산업 활용-혁신 AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>안전-신뢰 AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 정책제언</td>
<td>개인정보 관련 규제 개선, AI 확산 위한 분야별 고급인력 확보 필요</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 효율적 학습 및 AI 인프라 고도화 | • 개인별적인 데이터 결합과 원천 데이터 적극적 이용을 위한 개인정보보호법 개정과 개인식별정보의 가용성 및 이용을 적극적으로 권장해야 함.
• 대부분의 연구비 투자가 내역 면에서 인프라 구축이나 서비스 구축 등의 과제와 유사한 내용이 없음. 데이터 구축 중심의 과제는 연구개발로 분류되지만, 실제는 이에 따른 장비 구축이나 서비스 플랫폼 제공 등에 대한 예산을 투입하고 있음. 기술 고효율화에 대한 연구개발은 거의 없는 상황임. 인프라 및 서비스 구축과 기술개발이 혼재된 연구는 사실 인프라 구축을 중심으로 진행될 가능성이 매우 높기 때문에 인프라 구축과 기술개발 과제를 명확히 분리할 필요가 있음.
• 실질적인 AI 학습을 위한 프로그램 고도화를 할 수 있고 직접 현장에 적용할 수 있는 인력이 필요함. 단순한 학습 수준으로는 한계가 있음.
• 현재의 인력양성은 AI 기능 습득 중심의 인력양성 과정이 대다수임.
• 앞으로의 인력양성은 대학원 과정이나 전문적 연구인력과 기술개발 인력양성에 중점을 두고 이루어져야 기술경쟁력 확보에 기여할 수 있음.
• 국내 AI 학습용 데이터를 구축하고 있으나 실제 AI 학습을 위해 사용할 수 있는 환경과 Infra 조성을 필요함.
• 효율적 학습과 AI 인프라 고도화 기술을 위해서는 빅데이터와 AI에 적합한 H/W 설계가 필요함. 현재의 인프라는 기술 정체의 도입을 중심으로 이루어지고 있기 때문에 전력 효율이나 공동활용을 위한 클라우드 활용에 적합한 환경은 아님. 전력 효율과 운영 효율에 기반한 클라우드 중심의 IT/H/W 설계에서 서비스 제공을 위한 S/W 등의 기술 확보를 연구개발이 이루어져야 함. 이렇게 하여 국내 AI 및 빅데이터 분야 산업생태계가 조성되고 관련 유플러그 연구가 창출되도록 환경이 만들어져야 함. 모든 연구자와 사용자에게 high-end급 H/W를 제공할 필요는 없기에 heavy-duty 자원을 필요한 연구자와 light-duty 자원으로 하는 연구자에게 필요한 자원을 구분하여 제공할 수 있는 환경을 제공해야 함. |
| 첨단 AI 모델링 및 의사결정 (인지-판단 추론) | • 산발적 연구가 아닌 집중적 초기에 규모의 연구가 결과 공유가 필요함.
• 초기에 인터넷의 신뢰성 확보를 위한 국제 공동연구 추진 필요.
• 연구가 특성 분야에 집중되기는 AI/SW 분야 전반에 걸쳐 지속적인 확대가 필요함. 이는 인력양성과 유치에도 관련됨.
• AI의 요구사항(연구개발, 활용, 이해 등)에 맞춰 필요한 자식과 기술을 습득할 수 있는 맞춤형 교육 카리큘럼의 개발과 교육체계의 확립방안 필요.
• AI활용을 넘어 AI 연구와 기술 선도가 가능한 최고급 AI 인력 양성이 필요.
• 초기 AI를 품을 수 있는 거대 플랫폼 구축 필요.
• 기업 및 대학의 연구기관에서 효과적으로 활용할 수 있는 컴퓨팅 리소스와 데이터를 공유하여 사용할 수 있는 방안에 대한 지연 필요. |
| 산업 활용·혁신 AI | • 원자력·의료 등 규제기준이 명확하지 않아서 기술도입이 어려움. 규제기관이 먼저 나서서 규제를 마련할 필요.
• AI 기술의 성장은 데이터 확보와 매우 밀접한 국내 법·제도는 이를 가로막는 현실. 정보의 주체를 개인이 확보하는 이상 이 المس로 할 수 있는 제도적 접근 필요.
• 현재 국내의 AI분야 연구개발이 투자는 국외에서 먼저 발표되고 기초현장 AI 기술을 추적하기 위한 분야나 AI 본체전에 집중되고 있으며, AI기술의 산업분야에 적용과 활용을 높이기 위한 투자는 미흡.
• 현재 국내 인력양성은 AI 원천기술을 연구과제 중점(상위권 대학 중심의 논문 수준 연구)의 인력양성에 집중되고 있고, 산업 현장 개발 인력을 위한 인력양성에 대한 고려는 미흡.
• 각 산업대테인의 도메인적 특성과 인공지능 전문성 감달한 인력양성 필요. 기존 대학 학과에서 소화할 수 없으므로 별도의 대학·학과 간의 역할 외부에 몸돌 프로그램 필요.
• AI 기술은 타 기술(6G, 양자사다리 등)과의 융합을 통해 다양한 산업군에 적용 가능한 서비스 모델을 기획하고 상용화할 필요 있음. |
| 안전·신뢰 AI | • 인간지능 분야는 개인정보보호법에 의거하여 데이터를 수집하는 데 어려움이 있음. 또한, 인간지능 기술을 위한 일부 AI는 AI의 기술이 기반적이고 향후에 외형을 바탕에 학습에 필요한 정보를 최적화하기 어려운 것이 현재 실태임.
• 생성형 AI의 역전 대응, AI 신뢰성 검증, 오남용 방지 기술 등 정부 차원의 신뢰AI를 위한 R&D 집중적인 투자 필요.
• AI 기술이 적용된 안전시스템 구축 및 통신인프라 구축을 통해 안전기술 확보 필요. |
10 차세대통신

- 한국의 차세대통신 본야 기술수준은 세계최고 기술보유국인 미국 대비 80~90%로 위성통신을 제외한 분야에서 1년 이내의 범위로 추적
- 미국이 세계 최고수준의 기술을 보유하고 있으나, 중국도 6G기술은 최고수준을 보이고 있으며, 논문·특허 등 연구활동도 활발

(1) 기술수준 및 격차 선도국 대비 80~90% 수준으로 대부분 1년 격차

■ (기술수준·격차) 한국의 차세대통신 본야 기술수준은 세계최고 기술보유국인 미국 대비 80~90%로 1~3년의 격차

- 5G, 6G기술, 고효율 통신부품기술은 90% 수준이나, 오픈런 기술, 위성통신 기술은 선도국을 추적 중
- 중국의 6G 기술은 세계 최고수준이며, 5G 및 통신부품기술도 미국 다음 수준임
- EU도 미국 대비 2위 수준이나, 일본의 경우 전반적으로 차세대통신기술은 낮은 수준

각국별-기술별 기술수준/격차

■ (기술수준그룹) 전반적으로 미국이 선도하는 가운데, 한국과 EU도 일부 기술을 선도하면서 미국을 추격하고 있음을, 우리나라는 전반적으로 추격하고 있으며, 일본의 5G, 6G 기술은 후발주자의 위치에 있음을

<table>
<thead>
<tr>
<th>국가별 기술수준그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술명</td>
</tr>
<tr>
<td>5G 고도화(5G-Adv)</td>
</tr>
<tr>
<td>6G</td>
</tr>
<tr>
<td>오픈런(Open-RAN)</td>
</tr>
<tr>
<td>5G·6G 고효율 통신부품</td>
</tr>
<tr>
<td>5G·6G 위성통신</td>
</tr>
</tbody>
</table>

※ (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입력용이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹

■ (기술수준 근거) 한국이 선전하고 있으나 원천기술개발이 필요하며, 중국의 논문, 특히 등 기술 수준이 높은 편

<table>
<thead>
<tr>
<th>차세대통신 분야 국가별 기술수준 근거 전문가 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
</tr>
<tr>
<td>한국</td>
</tr>
<tr>
<td>중국</td>
</tr>
<tr>
<td>일본</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>
(2) 역량 및 경향

응용연구개발역량은 우수하며, 중국의 연구개발 상승세

■ (역량) 한국 차세대통신기술의 응용연구개발 역량은 우수한 편이다. 6G, 오폴렌, 위성통신 기술의 기초연구개발 역량은 ‘보통’ 수준

☐ 미국은 거의 모든 기술에서 기초, 응용연구개발역량이 밀집하며, 중국은 5G, 6G 기술의 연구개발 역량이 탁월한 것으로 나타남

* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

☐ 일본의 차세대통신분야 응용연구개발 역량은 ‘보통’ 수준으로 타 국가에 비해 저조한 편

■ (경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이나, 6G, 위성통신 기술분야 중국의 연구 개발이 급상승 중

☐ 일본의 경우 전통적으로 우수한 기술수준에도 불구하고, 6G, 통신부품 기술분야에서 유지세임

* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>한</td>
<td>중</td>
<td>일</td>
</tr>
<tr>
<td>5G 고도화(5G-Adv)</td>
<td>우수</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>6G</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>오폴렌(Open-RAN)</td>
<td>보통</td>
<td>우수</td>
<td>보통</td>
</tr>
<tr>
<td>5G·6G 화합물 통신부품</td>
<td>우수</td>
<td>우수</td>
<td>우수</td>
</tr>
<tr>
<td>5G·6G 위성통신</td>
<td>보통</td>
<td>우수</td>
<td>우수</td>
</tr>
</tbody>
</table>

(3) 논문·특허

논문은 중국, 특허는 미국이 강세를 보임

■ 분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논문</th>
<th>특허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유 효 건 수</td>
<td>11,041건</td>
<td>26,811건</td>
</tr>
<tr>
<td>5G 고도화(5G-Adv)</td>
<td>1,986건</td>
<td>8,832건</td>
</tr>
<tr>
<td>6G</td>
<td>224건</td>
<td>505건</td>
</tr>
<tr>
<td>오폴렌(Open-RAN)</td>
<td>330건</td>
<td>889건</td>
</tr>
<tr>
<td>5G·6G 화합물 통신부품</td>
<td>7,749건</td>
<td>12,293건</td>
</tr>
<tr>
<td>5G·6G 위성통신</td>
<td>752건</td>
<td>4,292건</td>
</tr>
</tbody>
</table>
분석 대상 논문·특허 연도별 추이

|----------------|-----------------|

※ 한국： ❯ 중국： ❯ 일본： ❯ EU： ❯ 미국

(지표별 결과) 한국은 논문 관련 지표는 4위권이나, 특허지표는 양적으로는 중국, 질적으로는 미국에 이어 2위권

✔ 논문 관련 지표는 양적, 질적으로 중국이 우위를 점하는 것으로 나타남

✔ 특허 관련 지표는 양적 지표는 중국이 우위이나, 질적인 지표는 미국과 한국이 우위임. 중요한 특허 비율, IP4점유율면에서 한국은 최고 수준의 결과를 보임

차세대통신 논문지표 분석 결과

<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주체 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5.4%</td>
<td>1887.8%</td>
<td>12.2</td>
<td>4.7%</td>
<td>0.52</td>
<td>13.8</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>한국, 중국</td>
<td>한국, 중국</td>
<td>한국, 중국</td>
<td>한국, EU, 미국</td>
<td></td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>3.8%</td>
<td>1462.7%</td>
<td>10.2</td>
<td>2.8%</td>
<td>0.55</td>
<td>9.2</td>
</tr>
<tr>
<td>중국</td>
<td>42.4%</td>
<td>5886.0%</td>
<td>17.3</td>
<td>41.8%</td>
<td>0.73</td>
<td>21.2</td>
</tr>
<tr>
<td>EU</td>
<td>38.1%</td>
<td>3100.9%</td>
<td>16.7</td>
<td>39.5%</td>
<td>0.86</td>
<td>37.8</td>
</tr>
<tr>
<td>미국</td>
<td>10.3%</td>
<td>2713.8%</td>
<td>16.6</td>
<td>11.3%</td>
<td>0.78</td>
<td>42.4</td>
</tr>
</tbody>
</table>
(점유율·영향력 분석) 한국은 차세대통신 기술분야 전반에 걸쳐 논문보다 특허에서 상대적으로 우위를 갖고 있음. 다만, 6G 기술의 경우 논문, 특허가 전반적으로 약세

-China 논문, 특허 전반에 걸쳐 양적으로는 압도적 우위를 보이고 있음. 질적 측면에서는 논문의 경우 대부분 평균 수준을 상회하나, 6G, 통신부품, 위성통신기술은 평균을 하회

-Japan 전반적으로 약세이나, 6G 기술은 논문, 특허의 질적 측면에서 평균을 상회하고 있으며, 위성통신기술 특허의 영향력도 높은 편

-EU 논문은 영향력 측면에서 대부분 평균 수준 내외에 있으며, 특허는 6G 및 통신부품 기술에서 강세를 보임

-USA 논문의 경우 5G, 통신부품, 위성통신 기술분야는 영향력이 평균을 상회하나, 특허 측면에서는 오픈랜 기술을 제외하면 평균을 상회하는 기술이 없음

〈기술별 논문·특허의 점유율·영향력〉
논문의 점유율(가로축)・영향력(세로축)

6G기술

보편성(Open-RAN)기술

고용률 5G-6G 통신부품기술

5G-6G 위성통신기술

특허의 점유율(가로축)・영향력(세로축)

6G기술

보편성(Open-RAN)기술

고용률 5G-6G 통신부품기술

5G-6G 위성통신기술

※ 한국 ■ 중국 ▲ 일본 ▪ EU ▫ 미국，※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 건수

167
<table>
<thead>
<tr>
<th>4. 정책제언</th>
<th>안보차원의 투자 확대, 표준 선도 및 고급인력 확보 필요</th>
</tr>
</thead>
</table>
| **5G 고도화 (5G Adv)** | • 5G Adv에서 오픈랜의 중요성은 계속 강조될 것이기 때문에 오픈랜 활성화를 위한 국내 주정부, 회사와 통신사 및 소상공업 간의 지속적인 협력 체계 구축이 필요. 이를 위해 정부는 역사이스 수립 및 수요·공급자 간 협력을 할 수 있는 생태계 프레임 조성 필요
• 5G Adv 표준 고도화에 따라 표준 분야에서 글로벌 국가와의 긴밀한 표준협력을 위한 공조체계 구축이 필요. 표준 분야에서 협력체계를 내기 위해서 사전에 공동연구를 통한 분위기 조성이 필요
• 5G에서 수익모델 발굴 부재로 통신사가 CAPEX(Capital Expenditures) 투자에 소극적이기 가능성이 높아질에 따라 이로 인해 정부, 단말, 부품사의 투자 선순환이 악화될 수밖에 없음. 투자의 불확실성이 높아질 만큼 민간은 본인 자본보다 정부 R&D에 의존성이 높아질 수밖에 없기 때문에 연구비 확대가 더욱 필요
• 협력업체간의 분야 간의 인재간 확성을 확립하고 있으므로 차세대통신 분야의 인력양성 정책이 절실함
• NPN, NTN 등 기존 이동통신과 다른 5G 시대에 도래했기 때문에 이를 토대로 할 수 있는 인프라가 필요 |
| **6G** | • 6G는 기술개발과 함께 표준이 중요한 요소로 국제협력을 통한 적극적인 표준화 추진이 가능하도록 국제 공동연구 지원 확대 필요
• 현재 대만의 5G 통신기술 및 산업은 세계적인 수준이지만 6G의 기술 수준은 기존 이동통신산업에 뿌리가 깊어 사업이 이계까지 해 온 기술의 발전에 더해 새로운 분야의 기술을 도입해야 함. 따라서 모든 개별 기업, 연구소, 연구자들이 한 단계 스마트업을 하기 위한 연구비 확대가 가장 절실함. 특히 단순 산업이 아닌 패권과 안보의 중심기술 하나로 미국, 중국, EU에서 대규모 지원을 하고 있는 상황에서 4G, 5G에서처럼 민간 자체 역량에만 의존하면 도태될 위험이 높음
• 상대적으로 단체, 시각적으로 인력이 술리라는 현실로 이동통신 산업계에서 재화 확보에 어려움을 겪을 것으로 예상됨. 국책연구 산학연 협력과 연계한 인력양성 방안도 같이 고려하는 것이 중요함
• 소자 및 시스템을 다양한 환경에서 테스트할 수 있는 국가 차원의 테스트베드가 필요함. 특히 중소업체는 해외 수출을 위하여 실제 이론 등이 필요함으로, 이를 해결해 줄 수 있는 인프라가 구축되면 중소업체에 큰 도움이 될 것임
• 5G 이동통신 이후로는 기술의 융합이라기보다 각각의 서로 다른 서비스 도메인 간의 융합시대가 되었음. 결국 서로 다른 도메인의 융합을 위해서는 서로를 이해할 수 있는 기회가 많이 만들어져야 한다고 생각함. 특히 앞으로는 지상망과 공간망의 융합을 통한 다양한 신규 서비스 발굴이 될 것으로 예상되며, 통신 관점에서는 이동통신과 위성통신 사업 관련 종사자들 간의 많은 교류가 필요할 것임 |
| **오픈랜 (Open-RAN)** | • 오픈랜의 취지가 개방화에 있기는 하나, 국내 산학연합 협력을 통한 생태계 구축이 글로벌 경쟁력 확보를 위한 기반이 될 것임
• O-RAN, RAN, TIP 등 표준화 국제기구 참여에 필요한 재정적·제도적 지원 필요
• 특정 제조사의 특화된 HW·SW가 아닌 개방형 구조를 체제한다면 품질 확보, 보장에 대한 리스크가 존재할 수 있다고 보임. 이런 경우 매우 정부 주도로 실시하는 통신사 품질 측정에서 얘기치 못한 결과에 대한 부담이 통신사에는 존재하므로 O-RAN 기술이 시장에서 자리를 잡으려면 통신사 품질 측정에 대한 제도적 개선이 필요
• 기존의 전통적인 이동통신 연구자들이 오픈랜 기술로 연구 분야를 전환·확대할 수 있도록 연구비를 확대하여야 함. 오픈랜 기술에서 사용하는 지능형 제어 기술 연구를 위해서도 AI/ML 연구가 진행되도록 연구 프로젝트 지원이 필요함 |
<table>
<thead>
<tr>
<th>5G·6G 고효율 통신부품</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 공격적인 연구비 투자 확대가 필수적임. 현재와 같은 fast follower를 넘어 first mover로 가기 위한 선제적 연구와 투자가 필요함</td>
</tr>
<tr>
<td>• 5G 및 6G 등에서 밸린마터피와 Upper Mid band 영역의 제품개발을 할 수 있는 인력이 필수이나, 국내 대학 등의 공급인력은 대부분임. 항후 도래할 5G Advanced 및 6G Upper Mid band 기가성능화 및 부품 국산화를 위해 인력양성 시급함</td>
</tr>
<tr>
<td>• RF 및 밸린마터피 주파수 대역의 안테나·부품을 연구하는 대학 내 연구자가 부족함. 반도체·AI뿐만 아니라 해당 분야도 대대적인 투자를 통해 신규 연구자를 유치하고 연구인력을 양성해야 함</td>
</tr>
<tr>
<td>• 5G, 6G 관련하여 생물 제작과 측정에 열약한 환경에 있음. 대기업들은 충분한 인프라가 있지만, 중견·중소업체에서 소재부품 관련하여 기술개발하고 이를 검증할 수 있는 국가적 인프라 구축이 필요함</td>
</tr>
<tr>
<td>• 5G·6G의 성공적 추진을 위해서는 인프라 구축을 성대국보다 빨리 확립하는 것이 중요함. 우리나라라는 기초 원천기술에서는 다소 열세이나 전통적으로 구현 및 응용 기술에 있어서는 경쟁력이 높음</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5G·6G 위성통신</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 해당 분야는 국제 기술 이전에 제한적인 분야이기 때문에 위성·통신 관련 기술개발 선도국과의 유기적 협력 체계를 구축하는 것을 목표로, 해당 분야 전문인력 교류를 최우선으로 추진하는 것이 필요함</td>
</tr>
<tr>
<td>• 위성통신 분야 연구개발과 산업화 촉진을 위한 제도 마련과 충실하게 수행될 수 있도록 관리 점검할 정부의 지원이 필요</td>
</tr>
<tr>
<td>• 우주개발에 대한 정책을 제고하고, 그에 결맞은 예산을 대폭 확대하여 향후 신시장 개척을 선도해야 함</td>
</tr>
<tr>
<td>• 연구비의 확대가 문제가 아니라, 적은 연구비라도 실패할 수 있는 도전적인 과제에 사용될 수 있도록 제도적인 개선이 필요</td>
</tr>
<tr>
<td>• 최근 다양한 이유로 무선통신 관련 전공을 가진 석박사 인력이 많이 줄어들고 있는 추세임. 따라서 무선통신 관련 인력양성 과정에 많은 지원을 하여 우수한 학생들이 해당 분야에 관심을 갖게 해야 함</td>
</tr>
<tr>
<td>• 발사체, 탑재체, 각종 서비스 장비들에 대한 시험을 원활히 할 수 있도록 국내 인프라 및 시험인증 설비를 구축할 필요가 있음</td>
</tr>
<tr>
<td>• 위성 통신 분야 기술을 개발하여 성능 측정 및 검증을 위한 공동 시험 시설을 구축하고 저렴한 비용으로 사용할 수 있는 지원 필요하며, 탑재체 분야의 인증 시험 시설 확충도 필요함</td>
</tr>
</tbody>
</table>
| • 한국에서 주도적으로 세계시장을 이끌고 있는 분야부터 우주개발 시대에 적합한 산업육성을 목표로 접근하는 것이 적절할 것으로 판단됨. 예를 들면 달말기, 부품, 통신서비스 등을 선도적으로 개발할 필요가 있음
11 첨단로봇·제조

- 미국의 우위속에서 EU와 일본도 핵심기술의 우위를 갖고 있음
- 우리나라는 선도국 대비 80~85% 수준으로 미국과 2~2.5년의 격차를 보이고 있으며, 중국은 상용화를 빠른 속도로 진행 중

(1) 기술수준 및 격차 선도국 대비 80~85% 수준으로 2~2.5년 격차

■ 기술수준·격차) 한국의 첨단로봇·제조 기술수준은 세계최고 기술보유국인 미국 대비 80~85%로 2~2.5년의 격차

☐ 미국이 선도하고 있으며, 고난도 자율조작기술, 가상 제조기술은 EU, 부품 및 SW기술은 일본도 세계 최고 수준을 보임

☐ 중국은 79~86.5%의 기술수준을 보이며, 2~3년의 격차로 한국보다 조금 더 격차를 보이고 있음

< 국가별-기술별 기술수준/격차 >

※ 한국 ■ 중국 □ 일본 ▲ EU ▿ 미국 기술수준(%), ○ 기술격차(년)
기술평가를 통해 미국, EU가 선도하는 가운데, 일본도 부품·SW 기술 및 인간-로봇 상호작용 기술은 선도국의 지위를 갖고 있음. 한국과 중국은 전반적으로 추격그룹의 위치에 있음

<table>
<thead>
<tr>
<th>국가별 기술평가</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>로봇 정밀제어·구동부품·SW</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>로봇 자율이동</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>고난도 자율조작</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>인간-로봇 상호작용</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>가상제조</td>
<td>추격</td>
<td>추격</td>
<td>추격</td>
<td>최고</td>
<td>최고</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 우리나라의 전반적인 연구역량의 제고가 시급함

(역량) 한국과 중국의 응용연구개발 역량은 우수한 편이나, 기초연구개발 역량은 ‘보통’ 수준임

전반적으로 미국과 EU의 연구개발 역량이 탁월한 편이며, 일본도 부품·SW 기술개발 역량은 탁월한 편으로 나타남. 그러나, 일본도 기상제조기술은 ‘보통’ 수준

* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족

(경향) 대부분의 국가들은 연구개발 활동경향이 ‘상승’세이나, 가상제조기술 관련 일본의 연구개발 활동 경향은 ‘유지’세임

* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강

<table>
<thead>
<tr>
<th>기술명</th>
<th>기초연구개발 역량</th>
<th>응용연구개발 역량</th>
<th>연구개발 활동경향</th>
</tr>
</thead>
<tbody>
<tr>
<td>로봇 정밀제어·구동부품·SW</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>로봇 자율이동</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>고난도 자율조작</td>
<td>우수</td>
<td>보통</td>
<td>탁월</td>
</tr>
<tr>
<td>인간-로봇 상호작용</td>
<td>보통</td>
<td>우수</td>
<td>탁월</td>
</tr>
<tr>
<td>가상제조</td>
<td>보통</td>
<td>보통</td>
<td>탁월</td>
</tr>
</tbody>
</table>
(3) 논문·특허

논문은 양·질적으로 EU의 우위가 두드러지며, 특허는 중국의 양적 우위가 두드러짐

■ 분석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논 문</th>
<th>특 허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>16,148건</td>
<td>39,315건</td>
</tr>
<tr>
<td>로봇 정밀제어·구동부품·SW</td>
<td>3,127건</td>
<td>22,912건</td>
</tr>
<tr>
<td>로봇 자율이동</td>
<td>3,306건</td>
<td>5,863건</td>
</tr>
<tr>
<td>고난도 자율조작</td>
<td>1,463건</td>
<td>2,898건</td>
</tr>
<tr>
<td>인간·로봇 상호작용</td>
<td>1,426건</td>
<td>4,035건</td>
</tr>
<tr>
<td>가상제조</td>
<td>6,826건</td>
<td>3,607건</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>논문 분석</td>
<td>특허 분석</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국

■ (지표별 결과)

한국의 논문 관련 지표는 전반적으로 5위권이며, 특허 관련지표는 전반적으로 4위권에 해당

✔ 논문 관련 지표는 양적, 질적으로 EU가 우위를 점하고 있으며, 특허지표는 양적으로는 중국, 질적으로는 미국이 우위를 점하고 있음
<table>
<thead>
<tr>
<th>국가</th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>종요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5.1%</td>
<td>-11.6%</td>
<td>9.5</td>
<td>4.7%</td>
<td>0.70</td>
<td>16.8</td>
</tr>
<tr>
<td>순위 1위</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>일본</td>
<td>12.8%</td>
<td>3.5%</td>
<td>7.2</td>
<td>8.9%</td>
<td>0.77</td>
<td>20.4</td>
</tr>
<tr>
<td>중국</td>
<td>22.2%</td>
<td>144.5%</td>
<td>9.5</td>
<td>16.7%</td>
<td>0.84</td>
<td>47.0</td>
</tr>
<tr>
<td>EU</td>
<td>38.2%</td>
<td>61.0%</td>
<td>13.4</td>
<td>44.1%</td>
<td>0.95</td>
<td>52.0</td>
</tr>
<tr>
<td>미국</td>
<td>21.7%</td>
<td>56.7%</td>
<td>15.4</td>
<td>25.6%</td>
<td>0.88</td>
<td>34.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국가</th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>종요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 청구량수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>10.7%</td>
<td>100.3%</td>
<td>6.9</td>
<td>9.8%</td>
<td>172.2%</td>
<td>6.2%</td>
<td>8.5</td>
</tr>
<tr>
<td>순위 1위</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>일본</td>
<td>9.2%</td>
<td>79.3%</td>
<td>7.6</td>
<td>15.2%</td>
<td>242.8%</td>
<td>16.9%</td>
<td>10.6</td>
</tr>
<tr>
<td>중국</td>
<td>59.5%</td>
<td>384.1%</td>
<td>5.9</td>
<td>19.9%</td>
<td>121.2%</td>
<td>8.1%</td>
<td>6.7</td>
</tr>
<tr>
<td>EU</td>
<td>7.4%</td>
<td>161.4%</td>
<td>20.4</td>
<td>19.5%</td>
<td>586.8%</td>
<td>30.7%</td>
<td>16.4</td>
</tr>
<tr>
<td>미국</td>
<td>13.2%</td>
<td>108.5%</td>
<td>21.1</td>
<td>35.6%</td>
<td>402.6%</td>
<td>38.1%</td>
<td>19.7</td>
</tr>
</tbody>
</table>

- **점유율·영향력 분석**: 한국의 논문, 특히는 점유율, 영향력 측면에서 전반적으로 열세이나, 부품/SW 기술, 인간-로봇 상호작용 기술 관련 논문은 평균 수준에 육박하거나 평균을 상회하고 있음. 특히 수는 적은 편은 아니나, 양적, 질적으로 전반적으로 평균을 하회.

- 한국의 논문, 특히는 양적으로는 일부분야를 제외하고 암도적인 우위를 점하고 있으나, 인간-로봇 상호작용기술을 제외하면 질적으로 평균을 상회하는 기술이 적음

- 일본의 논문, 특히도 전반적으로 양적, 질적 측면에서 평균을 하회

- EU의 논문은 양적, 질적 측면에서 최고수준이며, 특히도 대부분의 기술이 영향력 측면에서 평균을 상회

- 미국의 로봇 관련 기술은 논문, 특히 모두, 질적(영향력) 측면에서 평균을 상회하고 있음

- **기술별 논문·특허의 점유율·영향력**

 ![그래프](image_url)
<table>
<thead>
<tr>
<th>논문의 점유율(가로축)·영향력(세로축)</th>
<th>특허의 점유율(가로축)·영향력(세로축)</th>
</tr>
</thead>
<tbody>
<tr>
<td>로봇 자율이동기술</td>
<td>로봇 자율이동기술</td>
</tr>
<tr>
<td>고난도 자율조작기술</td>
<td>고난도 자율조작기술</td>
</tr>
<tr>
<td>인간-로봇 상호작용기술</td>
<td>인간-로봇 상호작용기술</td>
</tr>
<tr>
<td>가상 제조기술</td>
<td>가상 제조기술</td>
</tr>
</tbody>
</table>

※ 한국 ■ 중국 ■ 일본 ■ EU ■ 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특히 전체 건수

175
<table>
<thead>
<tr>
<th>세부종합기술</th>
<th>Top10 논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>로봇 정밀제어·구동 부품·SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>로봇 정밀제어·구동부품·SW</td>
<td>국내 로봇 활용 기업인 물류회사, 생산회사와 로봇 서비스를 제공하는 로봇 SI기업, 로봇 생산 기업이 모두 참여하는 생태계를 발전시켜야 함</td>
<td>도로 및 실내를 주행해야 하므로, 새로운 무인 운송수단으로서의 법·제도가 정비되어야 함</td>
</tr>
<tr>
<td>고난도 자율조작</td>
<td>인간-로봇 상호작용</td>
<td>가상제조</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>• 산학연의 기술개발이 각기 다른 방향의 지향점을 가지고므로 선도적인 기술이 제공되려는 협력 체계 구축 시급함</td>
<td>• 최근 미국을 중심으로 생협 a와 연계된 로봇 기술이 급격히 발전하고 있으며 이에 대한 투자는 상당적으로 대응이 늦어 보임. 따라서 앞서있는 미국의 주요 기술을 재배르게 흡수하기 위하여 국제협력이 필요함</td>
<td>• 가상제조 기술은 설비, 현장, SW개발 업체 등 다양한 기업의 기술 협력이 필요한 도메인으로 자원의 남비를 줄이고 솔루션 재활용성을 높여 나갈 수 있는 협력 체계 구축 및 연계가 필요</td>
</tr>
<tr>
<td>• 로봇 조작기술은 안전과 밀접한 관련이 있으며, 제도적으로 보완책을 마련하여 제조·서비스 산업 전반에 활용이 희석될 수 있도록 개선 필요</td>
<td>• 휴먼과의 정서적 교감이 목적인 HRI 연구는 단방향·간접적·투자만으로는 기술 수준 향상을 대략하기 어려운 연구 부담. 고령화·개방화 문제 및 산업적 needs 증기에 따라 장기적이고 지속적인 연구개발이 필요하며, 점진적인 연구 확대가 필요함</td>
<td>• 다양한 기술의 융합을 통해 구현되어 있어, 기술력을 가진 기업 간 협력 및 플랫폼이 필요함</td>
</tr>
<tr>
<td>• 인간형 로봇랜드와 인식기반 자율작업 기술과 같은 분야는 현재 시장에서 수익성이 낮아 기업의 직접 투자에는 한계가 있고, 반면 연구기관과 학교에서는 고난도 자율조작 관련 로봇 시스템의 복잡성으로 인해 삼각적으로 많은 연구비 투입이 필요함. 해당 기술이 향후 로봇 분야에서 확보해야 할 핵심기술임에 고려할 때 연구비 확대가 필요함 것으로 판단됨</td>
<td>• 휴먼과의 주요 협력기술 중 이동, 조작 분야에 투자가 집중되고 있고 인간-로봇 상호작용 기술 분야에 대한 투자는 상당적으로 매우 미흡한 상태로, 향후 인간-로봇 공존 시대 및 서비스 로봇 시장 확대를 대비한 투자 확대가 필요함</td>
<td>• 가상제조 기술은 전통적인 제조 기술에 ICT 기술을 접목하는 방식으로 스마트팩토리, 디지털 트윈, 메타버스 등에 대한 기술 확보를 위한 연구비 확대가 마련되어야 함</td>
</tr>
<tr>
<td>• 고난도 자율조작을 구현하기 위해서는 하드웨어의 설계 및 구성기술, 이에 기반한 학습기반 인식 및 조작기술과 관련된 소프트웨어 기술이 동시에 구현되어야 함. 하드웨어 분야에서도 해당 분야의 축적된 노하우에 기반하여 도출되는 새로운 돌파구 기술이 필요하며, 소프트웨어 분야에서도 AI 관련 개발이행이 있는 인력이 필요함. 따라서 이와 관련된 인력의 양성과 동시에 해당 연구단 본격적으로 뛰어들 수 있는 인력 유지도 동시에 필요할 것으로 판단됨</td>
<td>• 현재 로봇 관련 기술 인력은 제재 분야에 집중되어 있기 때문에 관련 SW 인력의 양성이 필요함. 인간-로봇 상호작용 기술은 제재 기술뿐만 아니라 다양한 SW 기술에 기반할 필요가 있기 때문에 관련 SW 인력양성이 매우 중요하다고 판단됨</td>
<td>• 가상제조 기술은 미래 많은 제조산업에 적용되기 시작함으로 20년 이내에 대부분의 제조 산업으로 확장을 것으로 예상되지만, 기업특히 중소기업) 스스로의 자본을 투자해 솔루션을 보유하기는 힘든 상황임. 특히 고난도의 가상제조 기술은 해외 대기업에서도 국가의 지원을 포함한 전문학문적 긍정을 투자하고 있는 만큼 우리나라가 선도적 기술을 확보하기 위해서는 기업 자체의 자본뿐만 아니라 국가의 지원이 절실히 필요함 상황임</td>
</tr>
<tr>
<td>• 인력 자원 후 자원들이 자유로운 연구와 활동이 가능한 연구 및 개발 환경 조성이 중요함</td>
<td>• 저기 인공지능을 개발 하드웨어-소프트웨어 공공인프라 구축 필요. 향후 인간-로봇 상호작용은 메타버스, 디지털 트윈 등의 기술 상용화로 단순히 1:1 상호작용이 아닌 N:N 집단 간 상호작용이 필요할 것임</td>
<td>• 현재 스마트팩토리, 가상제조 관련학과는 산업공학, 기계공학 등이 있으나, 전통적인 학문으로 판단되어 연구비 확보가 어려운 상황으로 인한적인 인력양성과 연구가 힘든 상황임. 해당 분야 연구 확대 필요</td>
</tr>
<tr>
<td>• 가상제조 기술은 미래 많은 제조산업에 적용되기 시작함으로 20년 이내에 대부분의 제조 산업으로 확장을 것으로 예상되지만, 기업특히 중소기업) 스스로의 자본을 투자해 솔루션을 보유하기는 힘든 상황임. 특히 고난도의 가상제조 기술은 해외 대기업에서도 국가의 지원을 포함한 전문학문적 긍정을 투자하고 있는 만큼 우리나라가 선도적 기술을 확보하기 위해서는 기업 자체의 자본뿐만 아니라 국가의 지원이 절실히 필요함 상황임</td>
<td>• 가상제조 기술을 위해서는 제조 현장 데이터 취득-수집이 현재되어야 하므로, 설비·기계 디지털화에 대한 인프라 구축에 투자 필요</td>
<td>• 가상제조 기술은 미래 많은 제조산업에 적용되기 시작함으로 20년 이내에 대부분의 제조 산업으로 확장을 것으로 예상되지만, 기업특히 중소기업) 스스로의 자본을 투자해 솔루션을 보유하기는 힘든 상황임. 특히 고난도의 가상제조 기술은 해외 대기업에서도 국가의 지원을 포함한 전문학문적 긍정을 투자하고 있는 만큼 우리나라가 선도적 기술을 확보하기 위해서는 기업 자체의 자본뿐만 아니라 국가의 지원이 절실히 필요함 상황임</td>
</tr>
</tbody>
</table>
12 양자

- 양자통신기술은 상당히 추격하고 있으나, 양자센싱 및 양자컴퓨팅기술은 4.3년, 6년의 격차로 추격을 시작하는 단계임
- 미국이 선도하는 가운데, 중국은 양자통신분야에서 최고수준의 기술을 보유

(1) 기술수준 및 격차 미국, EU, 중국 대비 50~80%로 2.8~6년의 격차

- (기술수준·격차) 한국의 양자 분야 기술수준은 세계최고 기술보유국인 미국, EU, 중국 대비 50~80%로 2.8~6년의 격차
 - 한국은 양자암호통신분야에서 성과를 내고 있으나, 양자컴퓨팅 및 양자센싱은 최고수준 국가와 상당한 격차를 보이고 있음
 - 미국이 양자기술 분야를 주도하는 가운데, 양자통신기술은 중국이 최고수준을 보이고 있으며, EU도 상당한 수준에 있으며, 일본은 2.3~3년의 격차로 추격 중

< 국가별·기술별 기술수준/격차 >

<table>
<thead>
<tr>
<th>양자컴퓨팅기술</th>
<th>양자통신기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술수준(%)</td>
<td>기술수준(%)</td>
</tr>
<tr>
<td>한국</td>
<td>50.0</td>
</tr>
<tr>
<td>중화인민공화국</td>
<td>85.0</td>
</tr>
<tr>
<td>일본</td>
<td>20.0</td>
</tr>
<tr>
<td>EU</td>
<td>1.0</td>
</tr>
<tr>
<td>미국</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>양자센싱기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술수준(%)</td>
</tr>
<tr>
<td>한국</td>
</tr>
<tr>
<td>중화인민공화국</td>
</tr>
<tr>
<td>일본</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>미국</td>
</tr>
</tbody>
</table>

※ 한국, 중국, 일본, EU, 미국 기술수준(%), 기술격차(년)
■ (기술수준근거) 전반적으로 미국, EU가 선도하는 가운데, 양자통신분야에서는 중국도 선도그룹에 있으며, 이를 일본이 추격하고 있음. 우리나라는 양자통신기술을 제외하고 후발주자그룹에 속함

〈국가별 기술수준그룹〉

<table>
<thead>
<tr>
<th>기술명</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td>양자컴퓨팅</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
<tr>
<td>양자통신</td>
<td>추격</td>
<td>최고</td>
<td>추격</td>
<td>선도</td>
<td>선도</td>
</tr>
<tr>
<td>양자센싱</td>
<td>후발</td>
<td>추격</td>
<td>추격</td>
<td>선도</td>
<td>최고</td>
</tr>
</tbody>
</table>

* (선도) 기술분야를 선도하는 그룹, (추격) 선진기술의 모방개량이 가능한 그룹, (후발) 선진기술의 도입중이 가능한 그룹, (낙후) 연구개발 능력이 취약한 그룹

■ (기술수준 근거) 한국과 중국은 양자암호통신 분야에서 두각을 나타내고 있으며, 각국 정부는 정책적으로 양자기술을 적극 육성하고 있음

〈양자 분야 국가별 기술수준 근거 전문가 의견〉

<table>
<thead>
<tr>
<th>국가</th>
<th>기술수준 근거</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀</td>
<td>정부 주도의 양자암호통신 육성을 위한 국책연구과제 및 전국 규모의 양 구축 사업이 진행 중이며, 대기업과 연구기관을 중심으로 양자컴퓨팅, 암호통신 기술 개발이 활발하게 이루어지고 있음</td>
</tr>
<tr>
<td>☉</td>
<td>국가수준의 양자네트워크 구축과 양자 전용 위성 활용 등 양자암호통신 분야에서 최고수준의 기술을 보유하고 있으며, 양자분야에 대한 지속적인 투자를 진행</td>
</tr>
<tr>
<td>☑</td>
<td>양자통신의 원천기술인 양자광학 연구에서 매우 우수한 연구결과를 가지고 있으며, 양자 네트워크 핵심 기술 개발 성과가 지속적으로 나타나고 있음</td>
</tr>
<tr>
<td>☠</td>
<td>유럽연합을 관통하는 국가 연합 양자 네트워크 구축 프로그램을 통해 양자통신 기술의 개발과 적응이 활성화되고 있으며, 학문적 전통을 기반으로 한 기초 연구력을 확보하고 있음</td>
</tr>
<tr>
<td>☩</td>
<td>20년 양자 네트워크 전략 비전 발표, 22년 백악관 산하 국가 양자 인터넷반 위기대책 공동체설립 등을 통해 양자 분야에 지속적인 투자를 진행하고 있으며, 국가 수준의 양자 네트워크 구축 실적과 양자 전용 위성을 이미 활용 중임</td>
</tr>
</tbody>
</table>

(2) 역량 및 경향 우리나라의 전반적인 연구영역의 재고가 시급함

■ (역량) 한국 양자기술의 기초, 응용연구개발 역량은 경쟁국에 비해 매우 부족한 수준으로 추격을 위한 획기적인 연구영역 재고가 필요

✔ 한국은 양자통신기술을 제외하고 역량면에서 대부분 '탁월'한 미국, EU, 중국 등 주요기술을 확보한 선도국과 차이를 보임
* 연구개발단계별 역량(5단계) : 탁월, 우수, 보통, 미흡, 부족
✔ 중국은 양자통신기술분야에서 연구영역이 탁월한 것으로 나타남

■ (경향) 대부분의 국가들은 연구개발 활동경향이 '상승'세이나, 양자컴퓨팅 기술분야 중국의 연구 개발이 급상승 중

✔ 일본의 경우 전통적으로 우수한 기술수준에도 불구하고, 양자센싱 및 양자통신기술분야에서 유지세임
* 연구개발단계별 역량(4단계) : 급상승, 상승, 유지, 하강
(3) 논문·특허 양자컴퓨팅은 미국이, 센싱 논문은 EU가 선도

分석 개요

<table>
<thead>
<tr>
<th>분석 대상</th>
<th>논 문</th>
<th>특 허</th>
</tr>
</thead>
<tbody>
<tr>
<td>유효 건수</td>
<td>11,247건</td>
<td>18,195건</td>
</tr>
<tr>
<td>양자컴퓨팅</td>
<td>2,433건</td>
<td>3,511건</td>
</tr>
<tr>
<td>양자통신</td>
<td>5,697건</td>
<td>12,058건</td>
</tr>
<tr>
<td>양자센싱</td>
<td>3,117건</td>
<td>2,626건</td>
</tr>
</tbody>
</table>

(지표별 결과) 한국의 논문지표는 4위권에 해당하며, 특허지표도 4-5위권에 해당하는 것으로 나타남

✔ 논문지표는 양적 측면(정유율, 증가율)에서는 중국이 우위를 점하고 있으며, 질적측면에서는 미국, 중국, EU가 지표별로 우위를 점하고 있음

✔ 특허지표는 중국이 정유율 측면의 우위가 있는 데, 미국이 전반적으로 질적 우위를 점하고 있음

* 한국의 특허영향력 1위는 양자센싱기술 중 양자점(quantum dot) 기술 관련 특허가 포함되어 있기 때문인 것으로 파악
<table>
<thead>
<tr>
<th></th>
<th>논문 점유율</th>
<th>논문 증가율</th>
<th>논문 영향력</th>
<th>중요논문 비율</th>
<th>연구주제 다양도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>2.5%</td>
<td>138.2%</td>
<td>9.6</td>
<td>1.6%</td>
<td>0.54</td>
<td>14.3</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>중국</td>
<td>미국</td>
<td>중국</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>7.4%</td>
<td>22.4%</td>
<td>15.1</td>
<td>6.7%</td>
<td>0.69</td>
<td>30.7</td>
</tr>
<tr>
<td>중국</td>
<td>27.3%</td>
<td>91.1%</td>
<td>13.7</td>
<td>24.0%</td>
<td>0.78</td>
<td>64.3</td>
</tr>
<tr>
<td>EU</td>
<td>37.1%</td>
<td>54.3%</td>
<td>21.2</td>
<td>41.0%</td>
<td>0.91</td>
<td>76.7</td>
</tr>
<tr>
<td>미국</td>
<td>25.6%</td>
<td>78.7%</td>
<td>23.2</td>
<td>26.8%</td>
<td>0.84</td>
<td>53.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>특허 점유율</th>
<th>특허 증가율</th>
<th>특허 영향력</th>
<th>중요특허 비율</th>
<th>해외 출원도</th>
<th>IP4 점유율</th>
<th>특허 청구항수</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>7.4%</td>
<td>141.3%</td>
<td>18.5</td>
<td>9.6%</td>
<td>336.7%</td>
<td>9.4%</td>
<td>11.0</td>
</tr>
<tr>
<td>순위</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1위</td>
<td>중국</td>
<td>미국</td>
<td>한국</td>
<td>미국</td>
<td>EU</td>
<td>미국</td>
<td>미국</td>
</tr>
<tr>
<td>일본</td>
<td>13.7%</td>
<td>-14.0%</td>
<td>5.1</td>
<td>15.2%</td>
<td>436.7%</td>
<td>19.0%</td>
<td>9.6</td>
</tr>
<tr>
<td>중국</td>
<td>46.4%</td>
<td>288.7%</td>
<td>4.7</td>
<td>19.1%</td>
<td>161.3%</td>
<td>11.3%</td>
<td>8.6</td>
</tr>
<tr>
<td>EU</td>
<td>7.0%</td>
<td>236.7%</td>
<td>7.3</td>
<td>12.0%</td>
<td>598.3%</td>
<td>15.0%</td>
<td>16.3</td>
</tr>
<tr>
<td>미국</td>
<td>25.5%</td>
<td>303.9%</td>
<td>7.7</td>
<td>44.1%</td>
<td>540.0%</td>
<td>45.3%</td>
<td>19.7</td>
</tr>
</tbody>
</table>

■ (점유율·영향력 분석) 절대적 비중은 적으나, 한국의 특허 면에서는 상대적으로 점적으로 우수한
중요 특허들을 출원

☑ 양자통신분야에서 논문은 선도적 수준이다, 특허는 양적 점유율에 비해 중요특허의 비중은 상대적으로 낮은 편

☑ 상대적으로 약세이나, 양자생성 및 통신분야의 특허는 상대적으로 우수

☑ 양자생성 및 통신분야에서 논문은 선도적 수준이나, 특허는 다소 약세임

☑ 양자컴퓨팅은 논문, 특허의 양과 질에서 양적도 수준이며, 논문측면에서는 EU 및 중국에 비해 상대적으로 약세이나, 특허의 점적 수준은 높음
논문의 점유율(가로축)·영향력(세로축) 특허의 점유율(가로축)·영향력(세로축)

양자컴퓨팅기술

양자통신기술

양자센서기술

※ [] 한국 [] 중국 [] 일본 [] EU [] 미국, ※ 원 크기 : 각 국가의 기술별 논문, 특허 전체 간수

* 한국의 특허영향력 1위는 양자센서기술 중 양자점(Quantum dot) 기술 관련 특허가 포함되어 있기 때문에 있는 것으로 파악
<table>
<thead>
<tr>
<th>연구기관</th>
<th>논문 발행 기관</th>
<th>Top10 특허 출원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>양자컴퓨팅</td>
<td>UNIVERSITY OF VIRGINIA</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MARYLAND</td>
<td>SONY</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA</td>
<td>HNU</td>
</tr>
<tr>
<td></td>
<td>TONGU UNIVERSITY</td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td>KAIST UNIVERSITY OF TECHNOLOGY</td>
<td>ORIGIN QUANTUM COMPUTING TECH</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>NIKKEI</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF TFE</td>
<td>BEIJING MICRO ELECTRO</td>
</tr>
<tr>
<td></td>
<td>CALIFORNIA INSTITUTE OF TECHNOLOGY</td>
<td>MCDERMOTT</td>
</tr>
<tr>
<td></td>
<td>STANFORD UNIVERSITY</td>
<td>NIKON</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF SOUTHERN CALIFORNIA</td>
<td>SAP.COM</td>
</tr>
<tr>
<td>양자통신</td>
<td>UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA</td>
<td>QUALCOMM</td>
</tr>
<tr>
<td></td>
<td>BEIJING UNIVERSITY OF POSTS AND TELECOMM</td>
<td>SOYON</td>
</tr>
<tr>
<td></td>
<td>GANZHI INSTITUTE OF TELECOMMUNICATIONS</td>
<td>HNU</td>
</tr>
<tr>
<td></td>
<td>TONGU UNIVERSITY</td>
<td>SAPPORO</td>
</tr>
<tr>
<td></td>
<td>CHINESE ACADEMY OF SCIENCES</td>
<td>CANON</td>
</tr>
<tr>
<td></td>
<td>SHANDONG UNIVERSITY</td>
<td>CHANDON</td>
</tr>
<tr>
<td></td>
<td>CENTRAL SOUTH UNIVERSITY</td>
<td>ZHEJIANG UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>BEIJING NORMAL UNIVERSITY</td>
<td>QUANTUMTECH</td>
</tr>
<tr>
<td></td>
<td>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</td>
<td>INTEL</td>
</tr>
<tr>
<td></td>
<td>SOUTHEAST UNIVERSITY</td>
<td>NIKON</td>
</tr>
<tr>
<td>양자센서</td>
<td>UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
</tr>
<tr>
<td></td>
<td>CHINESE ACADEMY OF SCIENCES</td>
<td>AMERICAN TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td>NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY OF CHINA</td>
<td>ALABAMA GROUP HOLDING</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>ORIGIN QUANTUM COMPUTING TECH</td>
</tr>
<tr>
<td></td>
<td>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</td>
<td>HAMAMATSU PROTEC</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF MARYLAND</td>
<td>CANON</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF TFE</td>
<td>UNIV SHANDON</td>
</tr>
<tr>
<td></td>
<td>EAST CHINA NORMAL UNIVERSITY</td>
<td>SHANGHAI HONGKING</td>
</tr>
</tbody>
</table>
| 양자컴퓨팅 | • 인력양성이 물리학 분야에 집중되어 있으나 공학 인력이 부족한 문제이므로 이 부분에서 개선이 필요
• 이온트랩, 초진동체, 웨이브라이드 플랫폼 분야 실험 인력을 적극적으로 양성할 필요가 있음, 독자적 프로토를 개발을 위해 다양한 기초 이론 인력양성도 고르게 지원해야 함
• 양자컴퓨터 사용 요소 개발자가 많이 양성되어야 하며, 개발주체가 기업 중심으로 진행되어야 하기 때문에 (Google, IBM, IonQ가 모두 기업이 선도하고 있음) 기업간에서의 인력이 양성될 수 있도록 정부·기업과의 협력 둘에 따른 유효한
• 양자소자, 이온트랩, 초진동체, 웨이브라이드도 개발을 위한 극한 환경에 기부감이 없는 독자적 능력을 살필 필요가 있음
• 국가 개발 사업을 통해서 만들어지는 모든 결과물을 개방형 인프라로 공개하는 정책이 요구됨, 그래야
• 국가에서 개발하는 모든 결과물에 대한 실질적이고 공개적인 검증이 가능하며, 이를 토대로 산업군에서
• 모두 구성요소들에게 대한 평가, 검증, 구동 환경으로 사용되는 것이 가장 효과적이다 판단됨
• 즉, 외국에서 구매는 것이 아닌, 국내에서 개발하는 결과물은 다른 사람이, 다른 기관, 사업 개발 과정에서
• 적극적으로 활용하게 하는 것이 인프라 구축의 효용성과 인력 확산에도 크게 도움이 될
• 양자 응용 연구를 위해 바이오, 약학, 화학 등 다 분야 학계 간 연구 추진 지원이 필요함 |
| 양자통신 | • 양자전송, 양자네트워크 등 미래 기술에 대한 기초 연구 국제협력 추진 필요
• 양자통신기술 분야에 정부 주도로 미국, EU 등과 협력 기반을 마련해 주고 협력을 할 수 있는 제도적 장치를 마련할 필요가 있음
• 양자암호 사용성을 위한 범제도 개선 및 공공기관 적용 정책을 통한 산업 마중물 역할 수행
• 양자통신기술 연구가 사용상으로 이어질 수 있도록 정비 시범인프라, 보안성 인증 등의 규제 요소들을 최소화
• 하고, 시험·인증기관을 확대하는 것이 필요함
• 망 구축 및 이에 필요한 정비 장비 생산 등의 산업은 이제 태동기 수준인 상황에서 연구 인력을 양성하고
• 유입하려면 국가적으로 연구비를 확대할 수밖에 없는 상황으로 판단됨
• 연구비 확대 시 양자기술 자체에 대한 투자도 필요하지만, 양자기술이 가능하게 만들어지는 냉동기 기술과
• 초진공 기술처럼 지원기술에 대한 투자도 필요함
• 산업이 활성화되지 못하면 연구인력 양성 및 유지에선 순환 구조가 만들어지지 않음. 국내 시장이 즐다면
• 국내 전문인력을 활용하여 해외로 기술·제품을 수출하는 구조를 적극적으로 만드어야 할 것으로 보임
| 양자센싱 | • 양자센서에 집중하고자 하는 기업이 생겨나고 있음. 기업과 대학 및 연구소를 연결하려는 프로그램 필요
• 현재 기술 진단국의 경우 양자기술의 급속 풀목으로 지정해서 관리 중요하므로, 관련 부품기술의 수입이
• 어려운 상황이며. 따라서 기술 습득의 가장 빠른 방법은 국내 인력을 해외로 유학 보내거나 파견하여 기술을
• 습득하는 것임
• 양자센서 기술은 국방, 우주산업 등에 활용되는 분야로 국내외에 맡길 수 없음. 국내 연구계의 일정 수준
• 규모 형성이 중요함
• 다양한 연구자들의 참여 및 경쟁을 유도하는 자유토모 연구재가 확대되어야 함. 이를 통해 도전적이고
• 창의적인 연구를 정착할 수 있으며 보다 효율적으로 연구비가 사용될 수 있음
• 대학에서 육성된 인력이 현저히 부족함. 이를 해결하기 위해서 교육에 대한 지원이 요구됨. 또한 육성된
• 인력이 국가 연구발전을 위해서 활용될 수 있도록 공공연구기관에서의 양자 연구채용을 강화할 필요가
• 있음
• 교육·연구·산업의 선순환 체계를 구축하기 위하여 많은 전문인력을 양성하는 것이 가장 시기함
• 외국에 비해 한국의 전문인력은 많이 부족한 실정이며, 교육·연구를 통해 양자기술 분야에 기여할 수
• 있는 박사급 인력을 충분히 양성하는 것이 필요함
• 양자센서를 제작할 수 있는 환경이 전해 있음. 또한, readout 또는 control을 위한 중요 부품·구성품은
• 모두 수입하고 있음. 따라서 센서제작공정 인프라의 구축이 필요함. 그러나 양자센서 구축이 단단히 인프라를
• 활용하면 가능하므로 양자센서의 문호를 열어줘야 함. 또한 그 외 중요 부품·구성품의 제작 및 개량개선
• 지원센터 구축·운영이 필요함 |
별첨

1. 2022 기술수준평가
 (136개 전체대상기술) 결과 요약
2. 2022 기술수준평가
 (50개 국가전략기술) 결과 요약
3. 2022 기술수준평가 운영위원회 위원 명단
4. 분석 결과 요약
5. 2024 기술수준평가 정성평가 개선 연구
 결과(안)
별첨 1 2022 기술수준평가(136개 전체대상기술) 결과 요약

'22년 주요 5개국 국가전략기술(60개, 응용표시) 포함한 전체대상기술(136개) 기술수준 및 기술격차

<table>
<thead>
<tr>
<th>대분류</th>
<th>번호</th>
<th>대상기술</th>
<th>한국</th>
<th>중국</th>
<th>일본</th>
<th>EU</th>
<th>미국</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
</tr>
<tr>
<td>대상기술 전체</td>
<td></td>
<td></td>
<td>81.5</td>
<td>3.2</td>
<td>82.6</td>
<td>3.0</td>
<td>86.4</td>
</tr>
<tr>
<td>1 부산교통</td>
<td>1 자율주행시스템기술</td>
<td>80.0</td>
<td>1.8</td>
<td>89.0</td>
<td>2.0</td>
<td>90.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2 전기·수송차기술</td>
<td>2 전기·수송차기술</td>
<td>95.0</td>
<td>1.0</td>
<td>85.0</td>
<td>2.0</td>
<td>95.0</td>
<td>0.5</td>
</tr>
<tr>
<td>3 도심교통잡류(UTM)기술</td>
<td>3 도심교통잡류(UTM)기술</td>
<td>77.5</td>
<td>3.5</td>
<td>85.0</td>
<td>2.3</td>
<td>72.5</td>
<td>4.0</td>
</tr>
<tr>
<td>4 지능형 건물관리기술</td>
<td>4 지능형 건물관리기술</td>
<td>82.0</td>
<td>3.0</td>
<td>77.0</td>
<td>3.8</td>
<td>89.0</td>
<td>2.0</td>
</tr>
<tr>
<td>5 전산화 다기능 건설재료 기술</td>
<td>5 전산화 다기능 건설재료 기술</td>
<td>80.5</td>
<td>2.3</td>
<td>71.3</td>
<td>3.8</td>
<td>90.0</td>
<td>1.3</td>
</tr>
<tr>
<td>6 스마트홈 기술</td>
<td>6 스마트홈 기술</td>
<td>85.5</td>
<td>1.5</td>
<td>80.5</td>
<td>2.5</td>
<td>83.0</td>
<td>2.0</td>
</tr>
<tr>
<td>7 자동차의 도시재생 기술</td>
<td>7 자동차의 도시재생 기술</td>
<td>85.0</td>
<td>3.5</td>
<td>75.0</td>
<td>6.0</td>
<td>95.0</td>
<td>2.0</td>
</tr>
<tr>
<td>8 스마트시티 구축 및 운영 기술</td>
<td>8 스마트시티 구축 및 운영 기술</td>
<td>85.5</td>
<td>2.0</td>
<td>80.0</td>
<td>3.0</td>
<td>82.5</td>
<td>3.0</td>
</tr>
<tr>
<td>9 국토디자인정보 구축 및 분석기술</td>
<td>9 국토디자인정보 구축 및 분석기술</td>
<td>82.0</td>
<td>3.0</td>
<td>80.0</td>
<td>3.0</td>
<td>80.0</td>
<td>3.0</td>
</tr>
<tr>
<td>10 자동차가능 인프라 구조물 건설기술</td>
<td>10 자동차가능 인프라 구조물 건설기술</td>
<td>85.0</td>
<td>3.0</td>
<td>83.0</td>
<td>3.5</td>
<td>93.0</td>
<td>1.5</td>
</tr>
<tr>
<td>11 비디오기 기반 국가 인프라 예방적 유지관리 기술</td>
<td>11 비디오기 기반 국가 인프라 예방적 유지관리 기술</td>
<td>85.0</td>
<td>3.0</td>
<td>80.0</td>
<td>3.5</td>
<td>90.0</td>
<td>2.0</td>
</tr>
<tr>
<td>12 스마트 철도교통 기술</td>
<td>12 스마트 철도교통 기술</td>
<td>87.0</td>
<td>2.8</td>
<td>87.0</td>
<td>3.0</td>
<td>94.5</td>
<td>1.5</td>
</tr>
<tr>
<td>13 지능형 물류체계기술</td>
<td>13 지능형 물류체계기술</td>
<td>85.0</td>
<td>2.5</td>
<td>90.0</td>
<td>1.5</td>
<td>85.0</td>
<td>2.5</td>
</tr>
<tr>
<td>건설·교통 분야</td>
<td>건설·교통 분야</td>
<td>85.3</td>
<td>2.3</td>
<td>82.8</td>
<td>2.8</td>
<td>88.7</td>
<td>1.8</td>
</tr>
<tr>
<td>14 재난안전</td>
<td>14 재난안전</td>
<td>80.0</td>
<td>3.5</td>
<td>70.0</td>
<td>5.0</td>
<td>85.0</td>
<td>2.0</td>
</tr>
<tr>
<td>15 범죄·대테 통합 지능형 예방·대응시스템 기술</td>
<td>15 범죄·대테 통합 지능형 예방·대응시스템 기술</td>
<td>80.0</td>
<td>2.5</td>
<td>80.0</td>
<td>2.5</td>
<td>85.0</td>
<td>2.0</td>
</tr>
<tr>
<td>16 재난 안전기술</td>
<td>16 재난 안전기술</td>
<td>80.0</td>
<td>2.0</td>
<td>79.0</td>
<td>2.5</td>
<td>90.0</td>
<td>1.0</td>
</tr>
<tr>
<td>17 재난동정 소방구조 장비·시스템 기술</td>
<td>17 재난동정 소방구조 장비·시스템 기술</td>
<td>85.0</td>
<td>2.3</td>
<td>83.5</td>
<td>2.5</td>
<td>90.0</td>
<td>1.5</td>
</tr>
<tr>
<td>재난안전 분야</td>
<td>재난안전 분야</td>
<td>81.3</td>
<td>2.6</td>
<td>78.1</td>
<td>3.1</td>
<td>87.5</td>
<td>1.6</td>
</tr>
<tr>
<td>18 우주 · 항공 · 해양 정체</td>
<td>18 우주 · 항공 · 해양 정체</td>
<td>55.0</td>
<td>15.0</td>
<td>86.0</td>
<td>5.3</td>
<td>82.5</td>
<td>7.0</td>
</tr>
<tr>
<td>19 우주 관측 · 센싱 기술</td>
<td>19 우주 관측 · 센싱 기술</td>
<td>65.0</td>
<td>10.5</td>
<td>80.0</td>
<td>5.0</td>
<td>81.0</td>
<td>5.0</td>
</tr>
<tr>
<td>20 달 착륙 · 표면 탐사기술</td>
<td>20 달 착륙 · 표면 탐사기술</td>
<td>45.0</td>
<td>11.5</td>
<td>80.0</td>
<td>5.0</td>
<td>66.5</td>
<td>8.0</td>
</tr>
<tr>
<td>21 첨단 항공 가스터빈 엔진·부품기술</td>
<td>21 첨단 항공 가스터빈 엔진·부품기술</td>
<td>50.0</td>
<td>15.0</td>
<td>70.0</td>
<td>10.0</td>
<td>80.0</td>
<td>5.0</td>
</tr>
<tr>
<td>22 우주항공 관측 · 감시 · 분석 기술</td>
<td>22 우주항공 관측 · 감시 · 분석 기술</td>
<td>60.0</td>
<td>9.5</td>
<td>75.0</td>
<td>7.0</td>
<td>80.0</td>
<td>5.5</td>
</tr>
<tr>
<td>23 해양 자원탐사기술</td>
<td>23 해양 자원탐사기술</td>
<td>60.0</td>
<td>7.0</td>
<td>80.0</td>
<td>3.5</td>
<td>85.0</td>
<td>2.0</td>
</tr>
<tr>
<td>24 지속가능한 해양생산 개발 기술</td>
<td>24 지속가능한 해양생산 개발 기술</td>
<td>81.0</td>
<td>5.0</td>
<td>82.5</td>
<td>5.0</td>
<td>90.0</td>
<td>2.0</td>
</tr>
<tr>
<td>25 극한환경 인프라 기술</td>
<td>25 극한환경 인프라 기술</td>
<td>77.0</td>
<td>5.0</td>
<td>82.0</td>
<td>4.0</td>
<td>85.0</td>
<td>3.8</td>
</tr>
<tr>
<td>우주 · 항공 · 해양 정체</td>
<td>우주 · 항공 · 해양 정체</td>
<td>61.6</td>
<td>9.8</td>
<td>79.4</td>
<td>5.6</td>
<td>81.3</td>
<td>4.8</td>
</tr>
<tr>
<td>대분류</td>
<td>번호</td>
<td>대상기술</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
</tr>
<tr>
<td>④ 국방 (3)</td>
<td>26</td>
<td>국방 스마트 플랫폼 및 무인화·자율화 기술</td>
<td>77.0</td>
<td>4.8</td>
<td>85.0</td>
<td>3.3</td>
<td>81.0</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>고해상 감시 정찰 및 장거리 정밀 탐지 기술</td>
<td>70.0</td>
<td>5.0</td>
<td>75.0</td>
<td>4.5</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>전군 다기능 내트워크 정보통합 및 사이버 대응 기술</td>
<td>83.0</td>
<td>3.0</td>
<td>87.0</td>
<td>2.5</td>
<td>83.0</td>
</tr>
<tr>
<td>⑤ 기계 제조 (13)</td>
<td>29</td>
<td>인간-로봇 상호작용기술</td>
<td>85.0</td>
<td>2.0</td>
<td>84.0</td>
<td>2.5</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>로봇 정밀제어·구동 부품·SW기술</td>
<td>80.0</td>
<td>2.5</td>
<td>80.0</td>
<td>3.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>로봇 자율이동기술</td>
<td>80.0</td>
<td>2.3</td>
<td>86.5</td>
<td>2.0</td>
<td>84.5</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>고난도 자율조작기술</td>
<td>85.0</td>
<td>2.0</td>
<td>79.0</td>
<td>3.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>기계 제조기술</td>
<td>80.0</td>
<td>2.5</td>
<td>85.0</td>
<td>2.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>재난구조 및 극한상황 로봇기술</td>
<td>79.0</td>
<td>3.3</td>
<td>80.0</td>
<td>3.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>고용률·초정밀 생산시스템 기술</td>
<td>85.0</td>
<td>3.0</td>
<td>71.5</td>
<td>5.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3D 프린팅 장비·소재 기술</td>
<td>70.0</td>
<td>4.0</td>
<td>71.0</td>
<td>3.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>3D 프린팅 소프트웨어·활용 기술</td>
<td>77.0</td>
<td>2.8</td>
<td>80.0</td>
<td>2.5</td>
<td>80.5</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>센터 전산예측기 통합형 기반기술</td>
<td>87.5</td>
<td>2.0</td>
<td>70.0</td>
<td>4.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>진환장·스마트 센서 기술</td>
<td>85.0</td>
<td>2.5</td>
<td>75.0</td>
<td>4.3</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>해양물질 실험기술 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>70.0</td>
<td>7.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>진환장·스마트 플랫폼 기반 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>80.0</td>
<td>5.0</td>
<td>80.0</td>
</tr>
<tr>
<td>⑥ 소재·나노 (5)</td>
<td></td>
<td>기계 제조 분야</td>
<td>82.1</td>
<td>2.8</td>
<td>78.9</td>
<td>3.3</td>
<td>87.9</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>기능성 유기소재 기술</td>
<td>80.0</td>
<td>2.0</td>
<td>80.0</td>
<td>2.5</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>진환장 바이오소재 기술</td>
<td>85.0</td>
<td>3.0</td>
<td>83.0</td>
<td>3.3</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>고성능 금속소재 기술</td>
<td>88.0</td>
<td>2.5</td>
<td>83.5</td>
<td>3.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>나노구조제어 세라믹·탄소 소재 기술</td>
<td>83.5</td>
<td>2.3</td>
<td>81.0</td>
<td>2.8</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>다기능 융복합소재 기술</td>
<td>80.0</td>
<td>3.0</td>
<td>75.0</td>
<td>3.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>소재·나노 분야</td>
<td>83.3</td>
<td>2.6</td>
<td>80.5</td>
<td>3.0</td>
<td>96.1</td>
</tr>
<tr>
<td>⑦ 농림수산·식품 (9)</td>
<td>47</td>
<td>지방성 및 고기성품 품종개발 기술</td>
<td>81.0</td>
<td>5.0</td>
<td>85.0</td>
<td>3.8</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>진환장 맞춤형 신재배기술</td>
<td>81.0</td>
<td>3.0</td>
<td>75.0</td>
<td>4.5</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>스마트팜 기술</td>
<td>77.5</td>
<td>4.0</td>
<td>80.0</td>
<td>3.8</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>유용유전자 및 유전자원 개발 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>90.0</td>
<td>2.0</td>
<td>88.0</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>진환장 사양기술</td>
<td>79.0</td>
<td>3.5</td>
<td>65.0</td>
<td>5.3</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>동물 질병 통제 기술</td>
<td>80.0</td>
<td>3.5</td>
<td>77.5</td>
<td>5.0</td>
<td>85.0</td>
</tr>
<tr>
<td>대분류</td>
<td>번호</td>
<td>대상기술</td>
<td>한국 (수준)</td>
<td>한국 (격차 (년))</td>
<td>중국 (수준)</td>
<td>중국 (격차 (년))</td>
<td>일본 (수준)</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>생물·보건·의료</td>
<td>53</td>
<td>ICT 기반 수산양식 및 수산자원 개발 기술</td>
<td>79.5</td>
<td>4.3</td>
<td>74.5</td>
<td>5.5</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>식품안전성 평가·향상 기술</td>
<td>87.5</td>
<td>2.3</td>
<td>77.5</td>
<td>4.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>식품가치창출기술</td>
<td>78.0</td>
<td>4.0</td>
<td>70.0</td>
<td>6.5</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>농림수산·식품 분야</td>
<td>82.5</td>
<td>3.4</td>
<td>79.2</td>
<td>4.0</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>합성생물학</td>
<td>75.0</td>
<td>3.0</td>
<td>75.0</td>
<td>3.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>감염병·백신·치료기술</td>
<td>75.0</td>
<td>4.5</td>
<td>77.5</td>
<td>3.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>유전자·세포 치료기술</td>
<td>82.5</td>
<td>3.0</td>
<td>80.0</td>
<td>2.5</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>디지털 헬스케이터 분석·활용기술</td>
<td>80.0</td>
<td>2.0</td>
<td>80.0</td>
<td>2.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>맞춤형 신약 개발 기술</td>
<td>70.0</td>
<td>5.0</td>
<td>75.0</td>
<td>5.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>지능형 약물 전달 최적화 기술</td>
<td>85.0</td>
<td>2.0</td>
<td>80.0</td>
<td>3.3</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>불임·난임극복기술</td>
<td>80.0</td>
<td>2.0</td>
<td>77.5</td>
<td>3.0</td>
<td>88.5</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>한약의 효능 및 기전 규명기술</td>
<td>81.0</td>
<td>3.5</td>
<td>100.0</td>
<td>0.0</td>
<td>81.0</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>의료영상활용기술</td>
<td>75.0</td>
<td>3.5</td>
<td>74.0</td>
<td>3.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>재활 치료 및 생활지원 기기 기술</td>
<td>80.0</td>
<td>3.0</td>
<td>70.0</td>
<td>5.0</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>생체적합 재료 개발기술</td>
<td>82.0</td>
<td>2.5</td>
<td>80.0</td>
<td>3.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>조질의 의료용 로봇 기술</td>
<td>75.0</td>
<td>4.0</td>
<td>70.0</td>
<td>5.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>절반원단 바이오칩 기술</td>
<td>82.5</td>
<td>2.0</td>
<td>80.0</td>
<td>2.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>뇌신경계 질환 원인 규명 및 치료·예방기술</td>
<td>80.0</td>
<td>2.5</td>
<td>80.0</td>
<td>2.5</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>뇌신경 건축 및 조절 기술</td>
<td>80.0</td>
<td>2.5</td>
<td>76.0</td>
<td>2.8</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>생명·보건의료 분야</td>
<td>79.4</td>
<td>2.9</td>
<td>78.9</td>
<td>2.9</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>에너지·자원</td>
<td>71</td>
<td>리튬이온전지 및 핵심소재기술</td>
<td>100.0</td>
<td>0.0</td>
<td>90.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차세대 이차전지 소재·설비기술</td>
<td>100.0</td>
<td>0.0</td>
<td>90.0</td>
<td>3.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이차전지 모듈·시스템기술</td>
<td>97.5</td>
<td>0.5</td>
<td>90.0</td>
<td>1.3</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이차전지 재사용·재활용기술</td>
<td>95.0</td>
<td>1.0</td>
<td>100.0</td>
<td>0.0</td>
<td>82.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>수전해 수소생산기술</td>
<td>80.0</td>
<td>3.0</td>
<td>77.5</td>
<td>3.8</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>수소자장·운송기술</td>
<td>70.0</td>
<td>5.0</td>
<td>65.0</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>수소연료전지 및 발전기술</td>
<td>85.0</td>
<td>3.0</td>
<td>75.0</td>
<td>4.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>소형모듈원자로(SMR)기술</td>
<td>86.0</td>
<td>4.0</td>
<td>84.0</td>
<td>5.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>선진원자력시스템·폐기물관리 기술</td>
<td>80.0</td>
<td>6.0</td>
<td>82.0</td>
<td>4.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>핵융합에너지 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>80.0</td>
<td>3.8</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>차세대기속기 기술</td>
<td>65.0</td>
<td>8.0</td>
<td>75.0</td>
<td>5.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>무선 전력전송·충전 기술</td>
<td>80.0</td>
<td>2.0</td>
<td>85.0</td>
<td>1.5</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>스마트 에너지Grid 기술</td>
<td>85.0</td>
<td>2.5</td>
<td>80.0</td>
<td>3.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고유한 전력수송 기술</td>
<td>85.5</td>
<td>2.3</td>
<td>90.0</td>
<td>1.5</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고유한 가스발전 기술</td>
<td>70.0</td>
<td>5.5</td>
<td>65.0</td>
<td>6.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>비디오 및 패턴자원 애니메이션 기술</td>
<td>80.0</td>
<td>4.8</td>
<td>79.5</td>
<td>4.0</td>
<td>85.0</td>
</tr>
<tr>
<td>대분류</td>
<td>번호</td>
<td>대상기술</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
</tr>
<tr>
<td>환경</td>
<td>87</td>
<td>지영에너지기술</td>
<td>70.0</td>
<td>5.5</td>
<td>76.0</td>
<td>3.5</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>고효율 태양전지기술</td>
<td>90.0</td>
<td>1.5</td>
<td>90.0</td>
<td>1.5</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>풍력발전 기술</td>
<td>76.0</td>
<td>5.0</td>
<td>85.0</td>
<td>3.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>해양에너지 기술</td>
<td>83.0</td>
<td>4.5</td>
<td>80.0</td>
<td>5.0</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>지능형 융합 자원탐사 기술</td>
<td>65.0</td>
<td>5.5</td>
<td>82.5</td>
<td>3.5</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>ICT기반 자원 개발·처리 기술</td>
<td>70.0</td>
<td>5.0</td>
<td>83.0</td>
<td>3.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>이산화탄소 포집·저장·이용 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>85.0</td>
<td>5.0</td>
<td>90.0</td>
</tr>
<tr>
<td>에너지·자원 분야</td>
<td>94</td>
<td>미세먼지 등 대기오염 대응기술</td>
<td>85.0</td>
<td>3.0</td>
<td>80.0</td>
<td>4.0</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>기후변화 감시·예측·적응 기술</td>
<td>85.0</td>
<td>4.8</td>
<td>87.5</td>
<td>4.3</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>고효율 친환경 Non-CO2 대체에너지 저장 기술</td>
<td>90.0</td>
<td>2.8</td>
<td>85.0</td>
<td>3.8</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>자연재해 감시·예측·대응 기술</td>
<td>80.0</td>
<td>5.0</td>
<td>80.0</td>
<td>6.0</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>우해요인의 환경·환경 위해성 평가 기술</td>
<td>80.0</td>
<td>3.8</td>
<td>75.0</td>
<td>5.0</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>생활환경 안전성전단 및 예방 기술</td>
<td>80.0</td>
<td>3.3</td>
<td>60.0</td>
<td>5.0</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>스마트 물순환 및 수자원 확보·관리 기술</td>
<td>88.0</td>
<td>4.0</td>
<td>83.0</td>
<td>5.0</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>통합 수환경 모니터링 및 관리 기술</td>
<td>80.0</td>
<td>4.0</td>
<td>75.0</td>
<td>5.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>수환경오염물질 초고도 처리 및 제어 기술</td>
<td>82.5</td>
<td>2.8</td>
<td>75.0</td>
<td>3.3</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>토양·지층 환경오염 관리기술</td>
<td>85.0</td>
<td>3.3</td>
<td>72.5</td>
<td>8.5</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>지능형 자연재생체 보전 및 복원 기술</td>
<td>75.0</td>
<td>6.0</td>
<td>70.0</td>
<td>6.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>폐지원 재활용 기술</td>
<td>85.0</td>
<td>2.0</td>
<td>90.0</td>
<td>1.8</td>
<td>95.0</td>
</tr>
<tr>
<td>환경·기상 분야</td>
<td></td>
<td></td>
<td>83.9</td>
<td>3.5</td>
<td>78.6</td>
<td>4.5</td>
<td>89.0</td>
</tr>
<tr>
<td>ICT·SW (31)</td>
<td>106</td>
<td>효율적 학습 및 AI인프라(SW/HW) 고도화기술</td>
<td>70.0</td>
<td>3.0</td>
<td>90.0</td>
<td>1.5</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>첨단 시스템물리·의료분야 (인조·전산·주문) 기술</td>
<td>85.0</td>
<td>1.8</td>
<td>90.0</td>
<td>1.3</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>산업 활용·혁신 AI기술</td>
<td>80.0</td>
<td>2.0</td>
<td>93.5</td>
<td>1.0</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>안전·신뢰 AI기술</td>
<td>80.0</td>
<td>2.0</td>
<td>90.0</td>
<td>1.5</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>5G 고도화(5G Adv)기술</td>
<td>90.0</td>
<td>1.0</td>
<td>97.5</td>
<td>0.5</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>6G기술</td>
<td>90.0</td>
<td>1.0</td>
<td>100.0</td>
<td>0.0</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>오픈랜드(Open-RAN)기술</td>
<td>80.0</td>
<td>1.0</td>
<td>85.0</td>
<td>0.8</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>고효율 5G·6G 통신폭투기술</td>
<td>90.0</td>
<td>1.0</td>
<td>95.0</td>
<td>0.5</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>5G·6G 위성통신기술</td>
<td>80.0</td>
<td>3.0</td>
<td>90.0</td>
<td>1.0</td>
<td>80.0</td>
</tr>
<tr>
<td>대분류</td>
<td>번호</td>
<td>대상기술</td>
<td>한국</td>
<td>중국</td>
<td>일본</td>
<td>EU</td>
<td>미국</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
<td>격차 (년)</td>
<td>수준 (%)</td>
</tr>
<tr>
<td>115</td>
<td>데이터·AI 보안기술</td>
<td>85.0</td>
<td>2.0</td>
<td>85.0</td>
<td>2.0</td>
<td>80.0</td>
<td>3.0</td>
</tr>
<tr>
<td>116</td>
<td>디지털 취약점 분석·대응(공급망 보안)기술</td>
<td>85.0</td>
<td>2.0</td>
<td>85.0</td>
<td>2.0</td>
<td>80.0</td>
<td>3.0</td>
</tr>
<tr>
<td>117</td>
<td>네트워크·클라우드 보안기술</td>
<td>82.0</td>
<td>3.0</td>
<td>89.0</td>
<td>2.0</td>
<td>80.0</td>
<td>4.0</td>
</tr>
<tr>
<td>118</td>
<td>산업·가상융합 보안기술</td>
<td>85.0</td>
<td>2.0</td>
<td>88.0</td>
<td>2.0</td>
<td>85.0</td>
<td>2.0</td>
</tr>
<tr>
<td>119</td>
<td>고집적·저항기반 매트릭스기술</td>
<td>95.0</td>
<td>1.0</td>
<td>90.0</td>
<td>1.5</td>
<td>85.0</td>
<td>1.5</td>
</tr>
<tr>
<td>120</td>
<td>반도체·첨단 패키징기술</td>
<td>90.0</td>
<td>2.0</td>
<td>85.0</td>
<td>2.0</td>
<td>90.0</td>
<td>1.5</td>
</tr>
<tr>
<td>121</td>
<td>고성능·저전력 인공지능 반도체기술</td>
<td>80.0</td>
<td>2.5</td>
<td>90.0</td>
<td>1.0</td>
<td>70.0</td>
<td>3.5</td>
</tr>
<tr>
<td>122</td>
<td>전력반도체기술</td>
<td>70.0</td>
<td>2.5</td>
<td>75.0</td>
<td>2.5</td>
<td>85.0</td>
<td>1.0</td>
</tr>
<tr>
<td>123</td>
<td>채세대 고성능 센싱기술</td>
<td>81.5</td>
<td>2.0</td>
<td>80.0</td>
<td>2.5</td>
<td>85.0</td>
<td>1.3</td>
</tr>
<tr>
<td>124</td>
<td>무기발광 다스플레이기술</td>
<td>91.0</td>
<td>1.0</td>
<td>86.0</td>
<td>2.0</td>
<td>85.0</td>
<td>1.0</td>
</tr>
<tr>
<td>125</td>
<td>반도체·디스플레이 소재·부품·장비기술</td>
<td>100.0</td>
<td>0.0</td>
<td>80.0</td>
<td>2.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>126</td>
<td>프리즘 다스플레이기술</td>
<td>100.0</td>
<td>0.0</td>
<td>85.0</td>
<td>2.0</td>
<td>85.0</td>
<td>1.5</td>
</tr>
<tr>
<td>127</td>
<td>양자센싱기술</td>
<td>65.0</td>
<td>4.3</td>
<td>87.5</td>
<td>1.5</td>
<td>75.0</td>
<td>2.8</td>
</tr>
<tr>
<td>128</td>
<td>양자컴퓨팅기술</td>
<td>50.0</td>
<td>6.0</td>
<td>85.0</td>
<td>1.5</td>
<td>70.0</td>
<td>3.0</td>
</tr>
<tr>
<td>129</td>
<td>양자통신기술</td>
<td>80.0</td>
<td>2.8</td>
<td>100.0</td>
<td>0.0</td>
<td>82.5</td>
<td>2.3</td>
</tr>
<tr>
<td>130</td>
<td>신한체 컴퓨터기술</td>
<td>75.0</td>
<td>4.0</td>
<td>80.0</td>
<td>3.0</td>
<td>85.0</td>
<td>2.5</td>
</tr>
<tr>
<td>131</td>
<td>사양 SW 운영 및 기반 기술</td>
<td>72.5</td>
<td>3.0</td>
<td>82.5</td>
<td>2.0</td>
<td>80.0</td>
<td>2.5</td>
</tr>
<tr>
<td>132</td>
<td>가상·혼합현실 기술</td>
<td>82.0</td>
<td>1.8</td>
<td>80.0</td>
<td>2.0</td>
<td>82.0</td>
<td>1.5</td>
</tr>
<tr>
<td>133</td>
<td>지능형 콘텐츠제작 기술</td>
<td>81.5</td>
<td>2.0</td>
<td>90.0</td>
<td>1.0</td>
<td>80.5</td>
<td>2.3</td>
</tr>
<tr>
<td>134</td>
<td>NUI·NUX 기술</td>
<td>84.0</td>
<td>2.0</td>
<td>85.0</td>
<td>2.0</td>
<td>86.0</td>
<td>1.5</td>
</tr>
<tr>
<td>135</td>
<td>초연결 사물인터넷 기술</td>
<td>85.0</td>
<td>1.5</td>
<td>85.0</td>
<td>1.5</td>
<td>85.0</td>
<td>2.0</td>
</tr>
<tr>
<td>136</td>
<td>지능형 실감 방송·미디어 서비스 기술</td>
<td>90.0</td>
<td>1.3</td>
<td>86.5</td>
<td>1.5</td>
<td>87.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

ICT·SW 분야 | 82.6 | 2.0 | 87.9 | 1.4 | 82.2 | 2.0 | 90.9 | 1.1 | 100.0 | 0.0 |

* 국가전략기술
별첨 2 2022 기술수준평가(50개 국가전략기술) 결과 요약

<table>
<thead>
<tr>
<th>유형</th>
<th>분야</th>
<th>국가전략기술</th>
<th>기술수준(%)</th>
<th>기술격차(년)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>한</td>
<td>중</td>
</tr>
<tr>
<td>국가전략기술 전체</td>
<td>81.7</td>
<td>86.5</td>
<td>85.2</td>
<td>92.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>95.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>80.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>90.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>70.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>81.5</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>91.0</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>100</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>100</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>100</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>100</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>97.5</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>95.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이차전지 분야</td>
<td>100</td>
<td>94.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>80.0</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>77.5</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>95.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>84.2</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>86.0</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>80.0</td>
<td>82.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>83.0</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>82.5</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>75.0</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>78.1</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>55.0</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>65.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>45.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>50.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>60.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>우주항공 해양분야</td>
<td>55.0</td>
<td>79.2</td>
</tr>
<tr>
<td>유형</td>
<td>분야</td>
<td>국가전략기술</td>
<td>기술수준(%)</td>
<td>기술격차(년)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>한</td>
<td>중</td>
</tr>
<tr>
<td>수소</td>
<td>27</td>
<td>수전해수소생산</td>
<td>80.0</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>수소저장·운송</td>
<td>70.0</td>
<td>65.0</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>수소연료전지 및 발전</td>
<td>85.0</td>
<td>75.0</td>
</tr>
<tr>
<td>사이버보안</td>
<td>(4)</td>
<td>30 데이터·AI 보안</td>
<td>85.0</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31 디지털취약점분석·대응(공급망보안)</td>
<td>85.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 네트워크·클라우드 보안</td>
<td>82.0</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 산업·가상융합 보안</td>
<td>85.0</td>
<td>88.0</td>
</tr>
<tr>
<td></td>
<td>사이버보안 분야</td>
<td>84.3</td>
<td>88.8</td>
<td>81.3</td>
</tr>
<tr>
<td>인공지능</td>
<td>(4)</td>
<td>34 효율적 학습 및 AI 인프라(SW/HW) 고도화</td>
<td>70.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 클라우드 AI모델링·의사결정(인공지능·학습)</td>
<td>85.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 산업활용·혁신 AI</td>
<td>80.0</td>
<td>93.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37 안전·신뢰 AI</td>
<td>80.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>인공지능 분야</td>
<td>78.8</td>
<td>90.9</td>
<td>76.4</td>
</tr>
<tr>
<td>필수기반</td>
<td></td>
<td>38 5G 고도화(5G Adv)</td>
<td>90.0</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39 6G</td>
<td>90.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 오픈레이(Open-RAN)</td>
<td>80.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41 고효율 5G·6G 통신부품</td>
<td>90.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42 5G·6G 위성통신</td>
<td>80.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>필수기반 분야</td>
<td>86.0</td>
<td>93.5</td>
<td>82.4</td>
</tr>
<tr>
<td>첨단로봇·제조</td>
<td>(5)</td>
<td>43 로봇 정밀제어·구동 부품·SW</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44 로봇 자율이동</td>
<td>80.0</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 고난도 자율조작</td>
<td>85.0</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 인간·로봇 상호작용</td>
<td>85.0</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47 가상 제조</td>
<td>80.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td>첨단로봇·제조 분야</td>
<td>82.0</td>
<td>82.9</td>
<td>89.3</td>
</tr>
<tr>
<td>양자</td>
<td>(3)</td>
<td>48 양자컴퓨팅</td>
<td>50.0</td>
<td>85.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 양자통신</td>
<td>80.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 양자센싱</td>
<td>65.0</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>양자 분야</td>
<td>65.8</td>
<td>91.9</td>
<td>76.7</td>
</tr>
</tbody>
</table>
2022 기술수준평가 운영위원회 위원 명단

<table>
<thead>
<tr>
<th>분야</th>
<th>성명</th>
<th>소속</th>
<th>직위</th>
</tr>
</thead>
<tbody>
<tr>
<td>운영위원장</td>
<td>윤석진</td>
<td>한국과학기술연구원</td>
<td>원장</td>
</tr>
<tr>
<td>건설·교통</td>
<td>이갑재</td>
<td>국토교통과학기술진흥원 연구지원실</td>
<td>실장</td>
</tr>
<tr>
<td>재난안전</td>
<td>김윤태</td>
<td>국립재난안전연구원 안전연구실</td>
<td>실장</td>
</tr>
<tr>
<td>우주·항공·해양</td>
<td>황진영</td>
<td>한국항공우주연구원 정책기획본부</td>
<td>책임연구원</td>
</tr>
<tr>
<td>국방</td>
<td>최중환</td>
<td>세종대학교</td>
<td>교수</td>
</tr>
<tr>
<td>기계·제조</td>
<td>한종석</td>
<td>산업기술기획평가원 산업기술혁신본부</td>
<td>본부장</td>
</tr>
<tr>
<td>소재·나노</td>
<td>문희성</td>
<td>국가나노기술정책센터</td>
<td>센터장</td>
</tr>
<tr>
<td>농림수산·식품</td>
<td>신완식</td>
<td>농림식품기술기획평가원</td>
<td>수석연구원</td>
</tr>
<tr>
<td>생명·보건·의료</td>
<td>이승규</td>
<td>한국바이오협회</td>
<td>부회장</td>
</tr>
<tr>
<td>에너지·자원</td>
<td>장재형</td>
<td>한국에너지공과대학 대학원</td>
<td>부위원장</td>
</tr>
<tr>
<td></td>
<td>이동형</td>
<td>한국원자력연구원 MSR원전기술개발사업단</td>
<td>단장</td>
</tr>
<tr>
<td>환경·기상</td>
<td>채여라</td>
<td>한국환경연구원</td>
<td>선임연구위원</td>
</tr>
<tr>
<td>ICT·SW</td>
<td>고영조</td>
<td>한국전자통신연구원 6G무선방식연구실</td>
<td>실장</td>
</tr>
<tr>
<td></td>
<td>조일구</td>
<td>정보통신기획평가원</td>
<td>수석연구원</td>
</tr>
</tbody>
</table>
별첨 4 2024 기술수준평가 정량분석 개선 연구 결과(안)

01-01-001 자율주행시스템기술 정량적 기술수준 분석

<table>
<thead>
<tr>
<th>대상기술(대)</th>
<th>건설·교통</th>
<th>대상기술(소)</th>
<th>첨단모빌리티</th>
</tr>
</thead>
<tbody>
<tr>
<td>대상기술(소)</td>
<td>자율주행시스템기술</td>
<td></td>
<td></td>
</tr>
<tr>
<td>기술 설명</td>
<td>운전자/승객의 조작 없이 자동차 스스로 판단하고 운행이 가능한 시스템</td>
<td></td>
<td></td>
</tr>
<tr>
<td>분석 개요</td>
<td>분석 대상</td>
<td>논문</td>
<td>특허</td>
</tr>
<tr>
<td>국가</td>
<td>한국, 중국, 일본, EU(영국 포함 28개국), 미국</td>
<td>한국, 중국, 일본, EU(영국 포함 28개국), 미국</td>
<td></td>
</tr>
<tr>
<td>데이터</td>
<td>SCOPUS 등재 논문</td>
<td>공개, 공고/등록 특허</td>
<td></td>
</tr>
<tr>
<td>대상기술(소)</td>
<td>유효 건수</td>
<td>884건</td>
<td>382건</td>
</tr>
</tbody>
</table>

197
1 분석 결과 요약

논문·특허의 활동력(양적)지표 분석 결과 요약
※ 지표별 세부결과 및 지표 설명은 별첨(Page.13~15) 참조

✔ 6개 활동력(양적) 분석지표 중 중국의 경우 5개, 일본의 경우 1개 분석지표에서 1위를 차지하고 있음
- 한국은 특허 증가율에서 상대적으로 강세를 나타냄

<table>
<thead>
<tr>
<th></th>
<th>논문 점유율</th>
<th>특허 점유율</th>
<th>논문 증가율</th>
<th>특허 증가율</th>
<th>해외출원도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>선도국</td>
<td>한국</td>
<td>한국</td>
<td>한국</td>
<td>한국</td>
<td>일본</td>
<td>한국</td>
</tr>
<tr>
<td></td>
<td>34.3%</td>
<td>32.7%</td>
<td>1,242.9%</td>
<td>12,300.0%</td>
<td>3.47</td>
<td>31</td>
</tr>
<tr>
<td>한국</td>
<td>4위</td>
<td>3위</td>
<td>4위</td>
<td>2위</td>
<td>5위</td>
<td>4위</td>
</tr>
<tr>
<td></td>
<td>5.7%</td>
<td>17.3%</td>
<td>425.0%</td>
<td>6,500.0%</td>
<td>1.80</td>
<td>11</td>
</tr>
<tr>
<td>5개국 평균</td>
<td>-</td>
<td>-</td>
<td>816.1%</td>
<td>12,533.3%</td>
<td>2.61</td>
<td>22</td>
</tr>
</tbody>
</table>

논문·특허의 기술력(질적)지표 분석 결과 요약
※ 지표별 세부결과 및 지표 설명은 별첨(Page.13~15) 참조

✔ 7개 기술력(질적) 분석지표 중 미국의 경우 3개, 중국의 경우 2개, EU의 경우 2개 분석지표에서 1위를 차지하고 있음
- 한국은 특별히 강세를 나타내고 있는 지표가 없음

<table>
<thead>
<tr>
<th></th>
<th>논문 영향력</th>
<th>특허 영향력</th>
<th>중요논문 비율</th>
<th>중요특허 비율</th>
<th>연구주체 다양도</th>
<th>IP4 점유율</th>
<th>특허 청구량</th>
</tr>
</thead>
<tbody>
<tr>
<td>선도국</td>
<td>미국</td>
<td>미국</td>
<td>한국</td>
<td>미국</td>
<td>EU</td>
<td>한국</td>
<td>EU</td>
</tr>
<tr>
<td></td>
<td>22.20</td>
<td>5.29</td>
<td>33.8%</td>
<td>38.9%</td>
<td>0.93</td>
<td>36.2%</td>
<td>20.50</td>
</tr>
<tr>
<td>한국</td>
<td>5위</td>
<td>5위</td>
<td>4위</td>
<td>5위</td>
<td>4위</td>
<td>5위</td>
<td>5위</td>
</tr>
<tr>
<td></td>
<td>11.22</td>
<td>1.67</td>
<td>5.1%</td>
<td>6.9%</td>
<td>0.72</td>
<td>8.5%</td>
<td>10.00</td>
</tr>
<tr>
<td>5개국 평균</td>
<td>15.47</td>
<td>4.78</td>
<td>-</td>
<td>-</td>
<td>0.84</td>
<td>-</td>
<td>15.17</td>
</tr>
</tbody>
</table>
참고
‘자율주행시스템기술’ 정량적 기술수준 시범 분석 결과

- [결과 요약] 자율주행시스템기술의 경우 양적 기술수준(활동력)은 중국이 가장 우수한 것으로 나타냈으며, 가중치를 부여한 경우와 부여하지 않은 경우 모두 각국별 활동력과 기술력의 순위에는 차이가 없음

※ (정량적 기술수준 분석) 자율주행시스템기술의 정량적 기술수준 분석을 위해 각 논문·특허의 지표별로 도출된 13개 값을 표준정규분포를 이용하여 점수(100점 만점)화하여 평균한 값을 정량적 기술수준 분석결과를 시범적으로 도출
※ 정량적 기술수준 분석은 1) 지표별로 가중치를 적용한 경우, 2) 가중치를 적용하지 않은 경우로 나누어 결과 제공
* (기준치) 여러 개의 가중치 모델을 다년간 시뮬레이션 한 결과를 바탕으로 다수의 특허전문가 의견을 통해 결정됨

<table>
<thead>
<tr>
<th>지표</th>
<th>가중치</th>
<th>지표</th>
<th>가중치</th>
<th>지표</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허정유율</td>
<td>9</td>
<td>특허증가율</td>
<td>8</td>
<td>해외출원도</td>
<td>6</td>
</tr>
<tr>
<td>논문정유율</td>
<td>9</td>
<td>논문증가율</td>
<td>8</td>
<td>논문영향력</td>
<td>10</td>
</tr>
<tr>
<td>연구주제 다양도</td>
<td>8</td>
<td>특허영향력</td>
<td>10</td>
<td>IP4 점유율</td>
<td>7</td>
</tr>
<tr>
<td>정구량수</td>
<td>5</td>
<td>중요논문 비율</td>
<td>9</td>
<td>중요특허 비율</td>
<td>9</td>
</tr>
<tr>
<td>H-Index</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

가중지 적용 결과

<table>
<thead>
<tr>
<th>논문·특허의 활동력(양적) 분석</th>
<th>논문·특허의 기술력(질적) 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>![활동력 차트]</td>
<td>![기술력 차트]</td>
</tr>
<tr>
<td>한국은 중국, 미국에 비해</td>
<td>한국은 미국, 중국에 비해</td>
</tr>
<tr>
<td>6개 분석 지표 중 논문 점유율이 가장 약세</td>
<td>7개 분석 지표 중 중요논문 비율이 가장 약세</td>
</tr>
</tbody>
</table>
가중치 미적용 결과

가중치 미적용시에도 논문·특허의 활동력(양적), 논문·특허의 기술력(질적) 분석의 국가별 순위는 가중치 적용시와 동일하게 나타남

<table>
<thead>
<tr>
<th>논문·특허의 활동력(양적) 분석</th>
<th>논문·특허의 기술력(질적) 분석</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>43</td>
</tr>
<tr>
<td>일본</td>
<td>71</td>
</tr>
<tr>
<td>EU</td>
<td>80</td>
</tr>
<tr>
<td>미국</td>
<td>100</td>
</tr>
</tbody>
</table>

논문·특허의 활동력(양적)은 중국이 1위, 한국은 4위에 랭크
논문·특허의 기술력(질적)은 미국이 1위, 한국은 5위에 랭크

한국은 중국, 미국에 비해 6개 분석 지표 중 논문 개수율이 가장 약세
한국은 미국, 중국에 비해 7개 분석 지표 중 중요특허 비율이 가장 약세

[주의]
본 결과는 시범적 분석 결과로서 참고용으로만 활용하시기 바라며, 보고서 전체에서 제공되는 각 지표별 결과를 반드시 확인하시기 바랍니다.
2 논문 지표별 분석

1. 연도별·국적별 발생 동향

- 대상기술(소)는 전체적으로 논문 발생이 증가하는 추세를 나타내고 있으며, 특히 2016년 이후 급격하게 증가하는 추세를 나타냄
- 중국의 논문 점유율이 가장 높고, 한국은 4위에 랭크됨(중국 34.3% > EU 31.0% > 미국 24.8% > 한국 5.7% > 일본 4.3%)
- 한국의 최근 연평균성장률이 64.4%로 가장 높음(전체 최근 연평균성장률 41.2%)

대상기술(소)의 연도별 국적별 발생건수 및 점유율

대상기술(소)의 국적별 최근5년(’17~’21) 연평균성장율(CAGR)
2-1. 전체 논문의 Top 10 발행기관 분석

- 중국의 TONGJI UNIVERSITY, 중국의 TSINGHUA UNIVERSITY 16건으로 전체 1위로 가장 활발한 연구활동을 하는 것으로 나타남
 - 중국의 TONGJI UNIVERSITY의 경우 과거6년에 순위권에 없었으나, 최근6년에는 16건의 논문을 발행하여 1위에 랭크됨
- 중국의 발행기관이 6개로 가장 많이 포함됨
 - 한국 국적의 발행기관은 없음
- Top10 발행기관은 과거6년에 7건을 발행하고, 최근6년에 112건을 발행하여 최근 R&D 활동이 활발한 것으로 나타남

<table>
<thead>
<tr>
<th>대상기술(소)의 Top10 발행기관 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- 과거6년(2010~2015) 건수
- 최근6년(2016~2021) 건수

<table>
<thead>
<tr>
<th>대상기술(소)의 구간별 Top5 발행기관 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기관</th>
<th>국가</th>
<th>순위</th>
<th>국가</th>
<th>순위</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVERSITE DE TECHNOLOGIE DE COMPIÈGNE</td>
<td>EU</td>
<td>4</td>
<td>1</td>
<td>TONGJI UNIVERSITY</td>
</tr>
<tr>
<td>SUNGKYUNKwan UNIVERSITY</td>
<td>한국</td>
<td>3</td>
<td>2</td>
<td>TSINGHUA UNIVERSITY</td>
</tr>
<tr>
<td>CARNEGIE MELLON UNIVERSITY</td>
<td>미국</td>
<td>2</td>
<td>3</td>
<td>UNIVERSITY OF MICHIGAN</td>
</tr>
<tr>
<td>DELFT UNIVERSITY OF TECHNOLOGY</td>
<td>EU</td>
<td>2</td>
<td>4</td>
<td>JILIN UNIVERSITY</td>
</tr>
<tr>
<td>NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS</td>
<td>중국</td>
<td>2</td>
<td>5</td>
<td>SOUTHEAST UNIVERSITY</td>
</tr>
</tbody>
</table>
2-2. 중앙준문*의 Top 10 발행기관 분석

- 중국의 TSINGHA UNIVERSITY, 미국의 UNIVERSITY OF CALIFORNIA 8건으로 가장 활발한 연구활동을 하는 것으로 나타남
 - 중국의 TSINGHA UNIVERSITY의 경우 최근 3년간 5건의 중앙준문을 발행하여 62.5%의 기술집중도**를 나타냄

- 중국 국적의 발행기관이 6개로 가장 많이 포함됨
 - 한국 국적의 발행기관은 없음

- 중앙준문 전체 272건 중에서 최근 3년간 152건의 중앙준문이 발행되어 대상기술(소)는 55.9%의 기술집중도를 나타냄
 * (중앙준문) 피인용 수 상위 30% 이상인 논문
 ** (기술집중도) 해당기관의 중앙준문 중 최근 3년간의 비중

<table>
<thead>
<tr>
<th>순위</th>
<th>발행기관</th>
<th>국적</th>
<th>중앙준문 건수</th>
<th>최근3년 (2019-2021) 중앙준문 건수</th>
<th>기술집중도**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TSINGHA UNIVERSITY</td>
<td>중국</td>
<td>8</td>
<td>5</td>
<td>62.5%</td>
</tr>
<tr>
<td>2</td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>미국</td>
<td>8</td>
<td>4</td>
<td>50.0%</td>
</tr>
<tr>
<td>3</td>
<td>CARNEGIE MELLON UNIVERSITY</td>
<td>미국</td>
<td>7</td>
<td>2</td>
<td>28.6%</td>
</tr>
<tr>
<td>4</td>
<td>JILIN UNIVERSITY</td>
<td>중국</td>
<td>6</td>
<td>5</td>
<td>83.3%</td>
</tr>
<tr>
<td>5</td>
<td>STANFORD UNIVERSITY</td>
<td>미국</td>
<td>6</td>
<td>2</td>
<td>33.3%</td>
</tr>
<tr>
<td>6</td>
<td>TONGJI UNIVERSITY</td>
<td>중국</td>
<td>6</td>
<td>4</td>
<td>66.7%</td>
</tr>
<tr>
<td>7</td>
<td>UNIVERSITY OF MICHIGAN</td>
<td>미국</td>
<td>6</td>
<td>3</td>
<td>50.0%</td>
</tr>
<tr>
<td>8</td>
<td>SOUTHEAST UNIVERSITY</td>
<td>중국</td>
<td>5</td>
<td>4</td>
<td>80.0%</td>
</tr>
<tr>
<td>9</td>
<td>XIDIAN UNIVERSITY</td>
<td>중국</td>
<td>5</td>
<td>5</td>
<td>100.0%</td>
</tr>
<tr>
<td>10</td>
<td>CHANG’AN UNIVERSITY</td>
<td>중국</td>
<td>4</td>
<td>4</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

대상기술(소) 중앙준문 전체 272 152 55.9%
2-3. Top 10 발행기관의 독점도 분석

- 대상기술(소)에 대한 시장관점의 기술독점 현황분석을 위해 집중률 지수(CR4) 분석 결과, 상위 4개 발행기관의 시장점유율이 6.9%로 독과점 정도가 매우 낮은 수준으로 분석되어 주요 발행기관들에 의한 기술 집중화 정도가 거의 없는 시장으로 판단됨.
- 즉, 대상기술(소)는 제품 구매자가 우위에 있는 기술 분야로 발행기관들 간의 경쟁 강도가 낮고, 시장 진입 용이성이 높은 것으로 분석됨.

※ (CRn, 집중률 지수) 주요발행기관에 의한 논문 점유율을 분석하여 기술집중력(시장 독과점 수준)을 판단하는 것으로, CRn값이 4에 가까울수록 시장 독과점 수준이 낮은 것을 의미하고, CRn 값이 40에서 60일 경우 시장의 독과점 수준이 높은 것으로 해석됨.
* 본 분석에서는 CR4를 사용하여 대상기술의 독과점 수준을 판단하기로 함

<table>
<thead>
<tr>
<th>순위</th>
<th>발행기관</th>
<th>국적</th>
<th>발행 건수</th>
<th>점유율</th>
<th>CRn</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TONGJI UNIVERSITY</td>
<td>중국</td>
<td>16</td>
<td>1.8%</td>
<td>1.8%</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>TSINGHUA UNIVERSITY</td>
<td>중국</td>
<td>16</td>
<td>1.8%</td>
<td>3.6%</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>UNIVERSITY OF MICHIGAN</td>
<td>미국</td>
<td>15</td>
<td>1.7%</td>
<td>5.3%</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>JILIN UNIVERSITY</td>
<td>중국</td>
<td>14</td>
<td>1.6%</td>
<td>6.9%</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>SOUTHEAST UNIVERSITY</td>
<td>중국</td>
<td>12</td>
<td>1.4%</td>
<td>8.3%</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>BEIJING INSTITUTE OF TECHNOLOGY</td>
<td>중국</td>
<td>10</td>
<td>1.1%</td>
<td>9.4%</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>UNIVERSITY OF CALIFORNIA</td>
<td>미국</td>
<td>10</td>
<td>1.1%</td>
<td>10.5%</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>CLEMSON UNIVERSITY</td>
<td>미국</td>
<td>9</td>
<td>1.0%</td>
<td>11.5%</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>WUHAN UNIVERSITY OF TECHNOLOGY</td>
<td>중국</td>
<td>9</td>
<td>1.0%</td>
<td>12.6%</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>CARNEGIE MELLON UNIVERSITY</td>
<td>미국</td>
<td>8</td>
<td>0.9%</td>
<td>13.5%</td>
<td>-</td>
</tr>
</tbody>
</table>

대상기술(소) 전체 884 100.0% CR4 = 6.9%
3-1. 전체 논문의 Top 10 저자 분석

- EU의 Tagne G. 5건으로 전체 1위로 가장 활발한 연구활동을 하는 것으로 나타남
 - EU의 Kiss G.의 경우 과거6년에 순위권에 없었으나, 최근6년에는 4건의 논문을 발행하여 1위에 랭크됨
- EU의 발행기관 소속의 저자가 3개로 가장 많이 포함됨
 - 한국 국적의 발행기관에 속한 저자는 2개 포함됨
- Top10 저자는 과거6년에 5건을 발행하고, 최근6년에 27건을 발행하여 최근 R&D 활동이 활발한 것으로 나타남

대상기술(소)의 Top10 저자 현황

<table>
<thead>
<tr>
<th>저자</th>
<th>한국</th>
<th>최근6년(2016~2021)</th>
<th>순위</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagne G.</td>
<td>EU</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Kiss G.</td>
<td>EU</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Koopman P.</td>
<td>미국</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Guo L.</td>
<td>미국</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Yang S.</td>
<td>중국</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kim I.</td>
<td>한국</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sadigh D</td>
<td>미국</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Grigorescu S.</td>
<td>EU</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Broggi A.</td>
<td>EU</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Liu P.</td>
<td>미국</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

대상기술(소)의 구간별 Top5 저자 현황

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagne G.</td>
<td>EU</td>
<td>4</td>
<td>1</td>
<td>Kiss G.</td>
<td>EU</td>
<td>4</td>
<td>승임</td>
</tr>
<tr>
<td>Pérez J.</td>
<td>EU</td>
<td>2</td>
<td>2</td>
<td>Koopman P.</td>
<td>미국</td>
<td>3</td>
<td>승임</td>
</tr>
<tr>
<td>Zhao H.</td>
<td>중국</td>
<td>2</td>
<td>3</td>
<td>Guo L.</td>
<td>미국</td>
<td>3</td>
<td>승임</td>
</tr>
<tr>
<td>Kim I.Y.</td>
<td>한국</td>
<td>2</td>
<td>4</td>
<td>Yang S.</td>
<td>중국</td>
<td>3</td>
<td>승임</td>
</tr>
<tr>
<td>Lin C.-H.</td>
<td>일본</td>
<td>2</td>
<td>5</td>
<td>Kim J.</td>
<td>한국</td>
<td>3</td>
<td>승임</td>
</tr>
</tbody>
</table>
3-2. 중요논문*의 Top 10 저자 분석

- 미국의 Koopman P.가 발행한 총 5건의 논문 중 3건이 중요논문으로 선정되어 가장 활발한 연구 활동을 하는 것으로 나타남
- 미국과 EU 국적 발행기관 소속의 저자가 각각 4개로 가장 많이 포함됨
 - 한국 국적의 발행기관은 없음
- 중요논문 전체 272건 중에서 최근 3년간 152건의 중요논문이 발행되어 대상기술(소)는 55.9%의 기술집중도를 나타냄
- Koopman P.는 5건의 논문으로 총 603회 인용되어, 평균 120.6회의 피인용도를 나타내고 있어, 대상기술(소) 분야에서 영향력이 높은 것으로 판단됨
 * (중요논문) 피인용 수 상위 30% 이상인 논문

<table>
<thead>
<tr>
<th>순위</th>
<th>저자</th>
<th>국적</th>
<th>중요논문 건수</th>
<th>발행 건수</th>
<th>피인용수 합계</th>
<th>평균 피인용수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Koopman P.</td>
<td>미국</td>
<td>3</td>
<td>5</td>
<td>603</td>
<td>120.6</td>
</tr>
<tr>
<td>2</td>
<td>Vaquero V.</td>
<td>EU</td>
<td>2</td>
<td>4</td>
<td>38</td>
<td>9.5</td>
</tr>
<tr>
<td>3</td>
<td>Yang S.</td>
<td>중국</td>
<td>2</td>
<td>3</td>
<td>72</td>
<td>24.0</td>
</tr>
<tr>
<td>4</td>
<td>Tagne G.</td>
<td>EU</td>
<td>2</td>
<td>3</td>
<td>122</td>
<td>40.7</td>
</tr>
<tr>
<td>5</td>
<td>Sadigh D.</td>
<td>미국</td>
<td>2</td>
<td>3</td>
<td>297</td>
<td>99.0</td>
</tr>
<tr>
<td>6</td>
<td>Broggi A.</td>
<td>EU</td>
<td>2</td>
<td>3</td>
<td>126</td>
<td>42.0</td>
</tr>
<tr>
<td>7</td>
<td>Wuthishuwong C.</td>
<td>EU</td>
<td>2</td>
<td>3</td>
<td>62</td>
<td>20.7</td>
</tr>
<tr>
<td>8</td>
<td>Liu P.</td>
<td>미국</td>
<td>1</td>
<td>3</td>
<td>23</td>
<td>7.7</td>
</tr>
<tr>
<td>9</td>
<td>Zhang K.</td>
<td>중국</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>Khayatian M.</td>
<td>미국</td>
<td>1</td>
<td>2</td>
<td>26</td>
<td>13.0</td>
</tr>
</tbody>
</table>

대상기술(소) 중요논문 전체 | 224 | 884 | 13,674 | 15.5 |
3-3. Top 10 저자 협력 관계 분석

- H-Index 상위 TOP10 저자의 연구 활동의 분포와 특정 연구 기관의 영향력을 살펴봄
- TOP10 저자는 한국, 미국, EU에 속한 발행기관에서 연구 활동을 통해 대상기술(소)에 대한 연구를 활발하게 진행 중에 있음
 - 한국 국적의 발행기관에서 연구활동을 진행 중인 TOP10 저자는 호서대학교(HOSEO UNIVERSITY) 소속의 Cheong H.-W.이 활발하게 연구를 진행 중임
- 저자 Koopman P., Sadigh D.가 발행한 논문은 높은 H-Index 수치를 보이고 있고, 해당 저자는 미국의 CARNEGIE MELLON UNIVERSITY, STANFORD UNIVERSITY, UNIVERSITY OF CALIFORNIA에서 중요한 연구 역할을 수행하고 있음

※ (H-Index) 개별 연구자의 연구논문과 성취, 학계에 미치는 영향력을 자연수로 표현하여 논문의 양적, 질적 우수성을 동시에 측정 가능 → 본 분석에서는 연구성과를 국가단위로 설정
* (예시) h=15 : A국가의 B기술분야의 피인용횟수가 15가 넘는 논문이 적어도 15편 있음을 의미

대상기술(소)의 주요 저자 협력 관계 현황

Cheong H.-W.	한국	HOSEO UNIVERSITY
Koopman P.	미국	CARNEGIE MELLON UNIVERSITY
Sadigh D.	미국	STANFORD UNIVERSITY
Tagne G.	EU	UNIVERISTE DE TECHNOLOGIE DE COMPIEGNE
Broggi A.	EU	SORBONNE UNIVERSITES
Pérez J.	EU	INRIA
Consolini L.	EU	UNIVERSITÀ DI PARMA
Ali Alsheeb K.M.	EU	UNIVERSITY OF ESSEX
Wei C.	EU	UNIVERSITY OF LEEDS
Wuthishuwong C.	EU	UNIVERSITY OF PARMA
		UNIVERSITY PADERBORN
		UNIVERSITÀ DEGLI STUDI DI PARMA
4. H-Index 국적별 분석

- H-Index는 중국이 가장 높게 나타났으며, 한국은 4위를 차지함
- 중국, 미국, EU는 평균보다 H-Index가 높게 나타나고, 한국, 일본은 H-Index가 평균보다 낮게 나타남
 - 중국 31 › 미국 31 › EU 29 › 한국 11 › 일본 10
※ (H-Index) 개별 연구자의 연구논문과 성취, 학계에 미치는 영향력을 자연수로 표현하여 논문의 양적, 질적
우수성을 동시에 측정 가능 ⇒ 본 분석에서는 연구성과를 국가단위*로 설정
* (예시) h=15 : A국가의 B기술분야의 피인용횟수가 15가 넘는 논문이 적어도 15편 있음을 의미

대상기술(소)의 국적별 연도별 인용수

대상기술(소)의 국적별 H-Index 결과

평균: 22

<table>
<thead>
<tr>
<th>국가</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>11</td>
</tr>
<tr>
<td>중국</td>
<td>31</td>
</tr>
<tr>
<td>일본</td>
<td>10</td>
</tr>
<tr>
<td>EU</td>
<td>29</td>
</tr>
<tr>
<td>미국</td>
<td>31</td>
</tr>
</tbody>
</table>
5. 논문의 포트폴리오(영향력, 점유율 상대적 비교) 분석

- 한국은 논문 영향력, 점유율 4분면 중 3사분면에 위치하여 타국에 비해 논문 발행과 영향력 측면의 수준이 낮은 것으로 나타남
- 미국의 경우 1사분면에 위치하여 대상기술(소)의 논문 분야를 주도하는 것으로 나타남
- 일본의 경우 2사분면에 위치하여 논문 영향력은 우수한 것으로 나타나고, EU, 중국의 경우 4사분면에 위치하여 논문 발행은 활발한 것으로 나타남
※ (논문 영향력) 특정기술/특정국가의 논문 1건당 피인용건수
※ (논문 점유율) 특정기술 분야의 해당국 논문 비중
※ (포트폴리오 분석) 각국의 논문 영향력과 논문 점유율을 각각 평균으로 나누어 1.00을 기준값으로 변환한 후 Y축 논문 영향력, X축 논문 점유율 그래프 상에 각 국의 상대적인 위치를 표시

<table>
<thead>
<tr>
<th>논문 영향력</th>
<th>논문 점유율</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>11.22</td>
</tr>
<tr>
<td>중국</td>
<td>11.90</td>
</tr>
<tr>
<td>일본</td>
<td>18.61</td>
</tr>
<tr>
<td>EU</td>
<td>14.37</td>
</tr>
<tr>
<td>미국</td>
<td>22.20</td>
</tr>
</tbody>
</table>

국적별 논문 포트폴리오 분석

바쁨 크기 : 각 국가의 논문 전체 건수
3 특허 지표별 분석

1. 기술성장주기 분석

<table>
<thead>
<tr>
<th>단계</th>
<th>내용</th>
<th>특허 관련 지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>도입기</td>
<td>신기술의 출현</td>
<td>출원 및 출원인의 완만한 증가</td>
</tr>
<tr>
<td>성장기</td>
<td>R&D 급증</td>
<td>출원 및 출원인의 급격한 증가</td>
</tr>
<tr>
<td>성숙기</td>
<td>지속적인 R&D 활동</td>
<td>출원 또는 출원인의 정체·감소</td>
</tr>
<tr>
<td>쇠퇴기</td>
<td>대체기술의 출현</td>
<td>출원의 감소 및 출원인의 정체·감소</td>
</tr>
</tbody>
</table>

대상기술(소)의 기술성장주기

대상기술(소)의 기술성장주기 그래프를 살펴보면, 대상기술(소)는 출원건수와 출원인수가 모두 급격하게 증가하고 있기 때문에 기술성장주기가 “성장기”에 해당하는 것으로 판단됨.
- “성장기”에 해당하는 기술은 R&D가 급증하는 특징을 갖추고 있음. 따라서, 한국은 타국가 기술수준에 뒤지지 않기 위해서 R&D 투자를 확대할 필요성이 있으며, R&D 결과물을 적극적으로 국내외 특허출원으로 연계하여 기술적 권리를 확보하는 것이 중요함.
2. 연도별·국적별 출원 동향

대상기술(소)의 연도별 국적별 출원건수 및 출원점유율

- 대상기술(소)은 전체적으로 특허 출원이 증가하는 추세를 나타내고 있으며, 특히 2016년 이후 급격하게 증가하는 추세를 나타냄
- 중국의 특허 점유율이 가장 높고, 한국은 3위에 랭크됨(중국 32.7% > 미국 28.5% > 한국 17.3% > 일본 12.8% > EU 8.6%)

- 한국의 최근 연평균성장율이 113.2%로 가장 높음(전체 최근 연평균성장율은 84.0%)
3. 연도별·특허청별 내외국인 동향

• 한국특허청은 외국인보다 내국인의 특허비용이 높고, 외국인 중에서는 미국이 7건으로 가장 높은 비중을 차지함
 - 한국특허청의 외국인 특허비용은 25%인 것으로 나타나 외국인 관련에서 한국은 대상기술(소) 분야의 시장매력도가 떨어지는 것으로 판단됨
• 중국특허청, 일본특허청은 외국인보다 내국인의 특허비용이 높고, 특히 중국특허청은 내국인 비중이 87%인 것으로 나타남
• 유럽특허청, 미국특허청은 내국인보다 외국인의 특허비용이 높고, 특히 유럽특허청은 외국인 비중이 75%인 것으로 나타남
 - EU, 미국 시장은 외국인 관련에서 대상기술(소) 분야의 특허출원을 통해 기술권리를 확보해야 할 만큼 시장매력도가 높은 것으로 판단됨
※ (특허청별 내외국인 동향) A국가에 B기술에 대한 외국인의 출원 비중이 높은 경우, A국가의 B기술 관련 시장매력도가 높은 것으로 볼 수 있음

대상기술(소)의 연도별 특허청별 내외국인 출원비중

<table>
<thead>
<tr>
<th>한국특허청</th>
<th>중국특허청</th>
<th>일본특허청</th>
<th>유럽특허청</th>
<th>미국특허청</th>
</tr>
</thead>
<tbody>
<tr>
<td>외국인</td>
<td>외국인</td>
<td>외국인</td>
<td>외국인</td>
<td>외국인</td>
</tr>
<tr>
<td>내국인</td>
<td>내국인</td>
<td>내국인</td>
<td>내국인</td>
<td>내국인</td>
</tr>
<tr>
<td>45, 75%</td>
<td>11, 58%</td>
<td>6, 75%</td>
<td>2, 25%</td>
<td>106, 54%</td>
</tr>
<tr>
<td>15, 25%</td>
<td>8, 42%</td>
<td>2, 25%</td>
<td>92, 46%</td>
<td></td>
</tr>
</tbody>
</table>
4-1. 주요출원인 분석 (전체특허 Top10 출원인)

- 한국의 엘지전자 21건으로 전체 1위에 랭크됨
 - 한국의 엘지전자의 경우 과거5년에 순위권에 없었으나, 최근5년에는 21건의 특허를 출원하여 1위에 랭크됨
- 미국의 출원인이 3개로 가장 많이 포함됨
 - 한국 국적의 출원인은 2개 포함됨
- Top10 출원인은 과거5년에 1건을 출원하고, 최근5년에 107건을 출원하여 최근 R&D 활동이 활발한 것으로 나타남

대상기술(소)의 Top10 출원인 현황

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>엘지전자(한국)</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>TOYOTA MOTOR(일본)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>BAIDU(중국)</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>HUAWEI TECHNOLOGIES(중국)</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>HONDA MOTOR(일본)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>FORD GLOBAL TECHNOLOGIES(미국)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>현대자동차(한국)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>ROBERT BOSCH(EU)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>INTERNATIONAL BUSINESS MACHINES(미국)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TOYOTA RESEARCH INSTITUTE(미국)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>출원인</th>
<th>순위</th>
<th>출원인</th>
<th>순위</th>
</tr>
</thead>
<tbody>
<tr>
<td>과거5년(2011~2015)</td>
<td></td>
<td>주요 출원인</td>
<td></td>
</tr>
<tr>
<td>FORD GLOBAL TECHNOLOGIES</td>
<td>1</td>
<td>엘지전자</td>
<td>1</td>
</tr>
<tr>
<td>INRIX</td>
<td>1</td>
<td>TOYOTA MOTOR</td>
<td>2</td>
</tr>
<tr>
<td>BEIJING INSTITUTE OF TECHNOLOGY</td>
<td>1</td>
<td>BAIDU</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>HUAWEI TECHNOLOGIES</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>HONDA MOTOR</td>
<td>5</td>
</tr>
<tr>
<td>최근5년(2016~2020)</td>
<td></td>
<td>주요 출원인</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>한국</td>
<td>21</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>일본</td>
<td>16</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>한국</td>
<td>9</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>중국</td>
<td>8</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>중국</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>한국</td>
<td>6</td>
</tr>
</tbody>
</table>

적용답변: 이 결과는 최근 5년간 출원한 특허의 규모 및 흥미를 반영하고 있습니다. 특히, 한국의 엘지전자와 TOYOTA MOTOR, BAIDU, HUAWEI TECHNOLOGIES, HONDA MOTOR 등국가의 출원인이 주요 출원인으로 나타났습니다. 이는 최근 R&D 활동에 대한 성과를 보여주는 결과로 해석할 수 있습니다.
4-2. 주요출원인 분석 (종요특허* Top 10 출원인)

- 일본의 TOYOTA MOTOR 12건으로 1위에 랭크됨
 - 일본의 TOYOTA MOTOR의 경우 최근 3년간 9건의 종요특허를 출원하여 75.0%의 기술집중도를 나타냄
- 미국 국적의 출원인이 6개로 가장 많이 포함됨
 - 한국 국적의 출원인은 없음
- 종요특허 전체 144건 중에서 최근 3년간 117건의 종요특허가 출원되어 대상기술(소)는 81.3%의 기술집중도를 나타냄

* 종요특허 : ①IP4 특허등록특허 및 공개특허 ②청구항수가 전체 평균보다 높은 특허(등록특허) ③패밀리가수가 전체 평균보다 높은 특허(등록특허)를 종요특허로 간주

** 기술집중도 : 해당출원인의 종요특허 중 최근 3년간의 비중

<table>
<thead>
<tr>
<th>순위</th>
<th>출원인</th>
<th>국적</th>
<th>종요특허 건수</th>
<th>최근3년(’18~’20) 종요특허 건수</th>
<th>기술집중도*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TOYOTA MOTOR</td>
<td>일본</td>
<td>12</td>
<td>9</td>
<td>75.0%</td>
</tr>
<tr>
<td>2</td>
<td>Baidu</td>
<td>중국</td>
<td>8</td>
<td>7</td>
<td>87.5%</td>
</tr>
<tr>
<td>3</td>
<td>FORD GLOBAL TECHNOLOGIES</td>
<td>미국</td>
<td>6</td>
<td>5</td>
<td>83.3%</td>
</tr>
<tr>
<td>4</td>
<td>Intel</td>
<td>미국</td>
<td>5</td>
<td>5</td>
<td>100.0%</td>
</tr>
<tr>
<td>5</td>
<td>HONDA MOTOR</td>
<td>일본</td>
<td>4</td>
<td>3</td>
<td>75.0%</td>
</tr>
<tr>
<td>6</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
<td>미국</td>
<td>4</td>
<td>3</td>
<td>75.0%</td>
</tr>
<tr>
<td>7</td>
<td>TRAXEN</td>
<td>미국</td>
<td>4</td>
<td>4</td>
<td>100.0%</td>
</tr>
<tr>
<td>8</td>
<td>GM GLOBAL TECHNOLOGY OPERATIONS</td>
<td>미국</td>
<td>4</td>
<td>3</td>
<td>75.0%</td>
</tr>
<tr>
<td>9</td>
<td>Baidu ONLINE NETWORK TECHNOLOGY (BEIJING)</td>
<td>중국</td>
<td>3</td>
<td>3</td>
<td>100.0%</td>
</tr>
<tr>
<td>10</td>
<td>STRADVISION</td>
<td>미국</td>
<td>3</td>
<td>3</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

대상기술(소) 종요특허 전체 144 117 81.3%
4-3. Top 10 출원인의 독점도 분석 I (CRn: 집중률 지수)

- 대상기술(소)에 대한 시장관점의 기술독점 현황분석을 위해 집중률 지수(CR4) 분석 결과, 상위 4개 출원인의 시장점유율이 16.0%로 독과점 정도가 낮은 수준으로 분석되어 주요 출원인들에 의한 기술 집중화 정도가 거의 없는 시장으로 판단됨
- 즉, 대상기술(소)는 제품 구매자가 우위에 있는 기술 분야로 기업들 간의 경쟁 강도가 높고, 시장 진입 용이성이 높은 것으로 분석됨

※ (CRn, 집중률 지수) 주요출원인에 의한 특허점유율을 분석하여 기술집중력(시장 독과점 수준)을 판단하는 것으로, CRn값이 0에 가까울수록 시장 독과점 수준이 낮은 것을 의미하고, CRn 값이 40에서 60일 경우 시장의 독과점 수준이 높은 것으로 해석됨
* 본 분석에서는 CR4를 사용하여 대상기술의 독과점 수준을 판단하기로 함

<table>
<thead>
<tr>
<th>순위</th>
<th>출원인</th>
<th>국적</th>
<th>출원 건수</th>
<th>점유율</th>
<th>CRn</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>엘지전자</td>
<td>한국</td>
<td>21</td>
<td>5.5%</td>
<td>5.5%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TOYOTA MOTOR</td>
<td>일본</td>
<td>16</td>
<td>4.2%</td>
<td>9.7%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Baidu</td>
<td>중국</td>
<td>12</td>
<td>3.1%</td>
<td>12.8%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HUAWEI TECHNOLOGIES</td>
<td>중국</td>
<td>12</td>
<td>3.1%</td>
<td>16.0%</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>HONDA MOTOR</td>
<td>일본</td>
<td>9</td>
<td>2.4%</td>
<td>18.3%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FORD GLOBAL TECHNOLOGIES</td>
<td>미국</td>
<td>9</td>
<td>2.4%</td>
<td>20.7%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>현대자동차</td>
<td>한국</td>
<td>8</td>
<td>2.1%</td>
<td>22.8%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ROBERT BOSCH</td>
<td>EU</td>
<td>8</td>
<td>2.1%</td>
<td>24.9%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
<td>미국</td>
<td>7</td>
<td>1.8%</td>
<td>26.7%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TOYOTA RESEARCH INSTITUTE</td>
<td>미국</td>
<td>6</td>
<td>1.6%</td>
<td>28.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>대상기술(소) 전체</td>
<td></td>
<td>382</td>
<td>100.0%</td>
<td>CR4 = 16.0%</td>
<td></td>
</tr>
</tbody>
</table>
4-4. Top 10 출원인의 독점도 분석 II (HHI: 허퍼달-허쉬만 지수)

- 대상기술(소)에 대한 시장관점의 기술독점 현황분석을 위해 HHI 분석 결과, 128.3로 독과점 정도가 낮은 수준으로 분석되어 주요 출원인들에 의한 기술 집중화 정도가 거의 없는 시장으로 판단됨.
- 즉, 대상기술(소)는 제품 구매자가 우위에 있는 기술 분야로 기업들 간의 경쟁 강도가 높고, 시장 진입 용이성이 높은 것으로 분석됨.

※ (HHI, Herfindahl-Hirschman Index) 산업 내 시장 집중도를 측정하는 데 사용되는 경제 지표로, 시장 내 각 기업의 시장 점유율을 제공한 값들의 합으로 계산됨

\[
HHI = \sum_{i=1}^{n} S_i^2 \left[\frac{(n\text{변체 출원인의 출원수})}{(4\text{기술분야의 전체출원수})} \right] \times 100
\]

<table>
<thead>
<tr>
<th>분석항목</th>
<th>HHI 범위</th>
<th>경쟁강도</th>
<th>집중 수준 [시장진입 가능성]</th>
</tr>
</thead>
<tbody>
<tr>
<td>완전 자유경쟁 시장 (Perfect competition)</td>
<td>0~100 미만</td>
<td>기술경쟁이 극심</td>
<td>매우 낮음 [시장진입 용이성 매우높음]</td>
</tr>
<tr>
<td>집중화 정도가 거의 없는 시장</td>
<td>100~1,000 수준</td>
<td>구매자 우위의 높은 경쟁강도</td>
<td>중간~낮음 [시장진입 용이성 높음]</td>
</tr>
<tr>
<td>경쟁적 시장</td>
<td>1,000~1,800 사이</td>
<td>규제당국이 목표로 하는 경쟁강도 범위</td>
<td>보통 [시장진입 용이성 보통]</td>
</tr>
<tr>
<td>과정적 시장</td>
<td>1,800~4,000</td>
<td>공급자 우위의 낮은 경쟁강도</td>
<td>중간~높음 [시장진입 용이성 낮음]</td>
</tr>
<tr>
<td>독점적 시장</td>
<td>4,000 이상</td>
<td>독점적 경쟁우위 출현</td>
<td>매우 높음 [시장진입 용이성 매우낮음]</td>
</tr>
</tbody>
</table>

대상기술(소)의 주요출원인 독점도 II 현황

<table>
<thead>
<tr>
<th>순위</th>
<th>출원인</th>
<th>국적</th>
<th>출원 건수</th>
<th>Si²</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>염지전차</td>
<td>한국</td>
<td>21</td>
<td>30.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>TOYOTA MOTOR</td>
<td>일본</td>
<td>16</td>
<td>17.5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Baidu</td>
<td>중국</td>
<td>12</td>
<td>9.9</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>HUAWEI TECHNOLOGIES</td>
<td>중국</td>
<td>12</td>
<td>9.9</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>HONDA MOTOR</td>
<td>일본</td>
<td>9</td>
<td>5.6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>FORD GLOBAL TECHNOLOGIES</td>
<td>미국</td>
<td>9</td>
<td>5.6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>현대자동차</td>
<td>한국</td>
<td>8</td>
<td>4.4</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>ROBERT BOSCH</td>
<td>EU</td>
<td>8</td>
<td>4.4</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>INTERNATIONAL BUSINESS MACHINES</td>
<td>미국</td>
<td>7</td>
<td>3.4</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>TOYOTA RESEARCH INSTITUTE</td>
<td>미국</td>
<td>6</td>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>그 외 출원인들</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>대상기술(소) 전체</td>
<td></td>
<td></td>
<td></td>
<td>382</td>
<td>HHI = 128.3</td>
</tr>
</tbody>
</table>
5. 특허 등록율 분석

- 미국(46.8%), 중국(44.4%), 일본(44.9%)의 특허 등록율이 평균 등록율보다 높은 값을 나타내고 있어, 이 분야의 기술개발에서 한국, EU보다 상대적 질적 심도 및 다양성이 높은 것으로 나타남
- 대상기술(소)의 전체 특허 등록율은 평균 42.4%인 것으로 나타남
- 특허청 별로는 미국특허청의 특허 등록율이 가장 높은 반면, 유럽특허청의 특허 등록율이 가장 낮은 것으로 나타남

※ A국가의 특허 등록율이 높은 경우, 타 국가에 비해 상대적으로 특허의 질적 심도 및 다양성이 높은 것으로 볼 수 있음
※ 다만, 각국 특허청별 특허 등록율 차이는 특허 자체의 특허성 차이 외에, 각 특허청별로 대상기술(소) 분야의 공공성을 고려한 심사 정책의 차이에 따라 다를 수 있음

<table>
<thead>
<tr>
<th>국적</th>
<th>한국특허청 등록</th>
<th>미국특허청 등록</th>
<th>일본특허청 등록</th>
<th>유럽특허청 등록</th>
<th>중국특허청 등록</th>
<th>전체</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>42.2%</td>
<td>16.7%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td>34.8%</td>
</tr>
<tr>
<td>중국</td>
<td>75.0%</td>
<td>62.5%</td>
<td>33.3%</td>
<td>50.0%</td>
<td>39.3%</td>
<td>46.4%</td>
</tr>
<tr>
<td>일본</td>
<td>0.0%</td>
<td>55.9%</td>
<td>27.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>44.9%</td>
</tr>
<tr>
<td>EU</td>
<td>50.0%</td>
<td>31.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>24.2%</td>
</tr>
<tr>
<td>미국</td>
<td>0.0%</td>
<td>53.3%</td>
<td>33.3%</td>
<td>0.0%</td>
<td>20.0%</td>
<td>46.8%</td>
</tr>
<tr>
<td>대상기술(소) 전체</td>
<td>38.3%</td>
<td>49.5%</td>
<td>26.3%</td>
<td>25.0%</td>
<td>35.1%</td>
<td>42.4%</td>
</tr>
</tbody>
</table>
6. 특허의 포트폴리오(영향력, 점유율 상대적 비교) 분석

- 3사분면에 위치하여 타국에 비해 특허 출원과 영향력 측면의 수준이 낮은 것으로 나타남
- 미국의 경우 1사분면에 위치하여 대상기술(소)의 특허 분야를 주도하는 것으로 나타남
- 일본, EU의 경우 3사분면에 위치하여 특허 출원과 영향력이 저조한 것으로 나타나고, 중국의 경우 4사분면에 위치하여 특허 출원은 활발한 것으로 나타남

※ (특허 영향력) 특정기술/특정국가의 미국등록특허 1건당 피인용건수
※ (특허 점유율) 특정기술 분야의 해당국 특허 비중
※ (포트폴리오 분석) 각국의 특허 영향력과 특허 점유율을 각각 평균으로 나누어 1.00을 기준값으로 변환한 후 Y축 특허 영향력, X축 특허 점유율 그래프 상에 각 국의 상대적인 위치를 표시

<table>
<thead>
<tr>
<th>특허 영향력</th>
<th>특허 점유율</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국 1.67</td>
<td>한국 17.3%</td>
</tr>
<tr>
<td>중국 4.45</td>
<td>중국 32.7%</td>
</tr>
<tr>
<td>일본 4.68</td>
<td>일본 12.8%</td>
</tr>
<tr>
<td>EU 3.71</td>
<td>EU 8.6%</td>
</tr>
<tr>
<td>미국 5.29</td>
<td>미국 28.5%</td>
</tr>
</tbody>
</table>

국적별 특허 포트폴리오 분석

비율 크기 : 각 국가의 특허 전체 건수
7. 한국의 지역별 R&D 현황 분석

- 한국은 서울 지역에서 대상기술(소)에 대한 연구개발 활동이 활발한 것으로 나타남
 - 엘지전자는 최근 3년간 21건의 특허를 출원하여 100.0%의 기술집중도**를 나타냄
- 서울 지역의 출원인이 4개로 가장 많이 포함됨
- 대상기술(소)는 전체 87건 중에서 최근 3년간 66건의 특허가 출원되어 75.9%의 기술집중도를 나타냄
 * 중요특허 : ①IP4 특허(등록특허 및 공개특허) ②정구형수가 전체 평균보다 높은 특허(등록특허) ③패밀리국가 수가 전체 평균보다 높은 특허(등록특허)를 중요특허로 간주
 ** 기술집중도 : 해당출원인에 특허 중 최근 3년간의 비중

<table>
<thead>
<tr>
<th>지역별 특허 출원 분포</th>
<th>한국의 주요출원인 현황</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>순위</th>
<th>출원인</th>
<th>지역</th>
<th>출원 건수</th>
<th>최근3년’(18~20) 출원 건수</th>
<th>기술집중도*</th>
<th>중요특허** 건수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>엘지전자</td>
<td>서울</td>
<td>21</td>
<td>21</td>
<td>100.0%</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>현대자동차</td>
<td>서울</td>
<td>9</td>
<td>8</td>
<td>88.9%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>삼성전자</td>
<td>경기</td>
<td>3</td>
<td>3</td>
<td>100.0%</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>서울대학교</td>
<td>서울</td>
<td>2</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>한국전자통신연구원</td>
<td>대전</td>
<td>2</td>
<td>1</td>
<td>50.0%</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>삼성영</td>
<td>경기</td>
<td>2</td>
<td>1</td>
<td>50.0%</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>차세대융합기술연구원</td>
<td>경기</td>
<td>2</td>
<td>1</td>
<td>50.0%</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>주식회사 에이치엘클리어브</td>
<td>인천</td>
<td>2</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>오토아이티</td>
<td>대구</td>
<td>2</td>
<td>2</td>
<td>100.0%</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>단국대학교</td>
<td>서울</td>
<td>1</td>
<td>1</td>
<td>100.0%</td>
<td>1</td>
</tr>
</tbody>
</table>

대상기술(소) 중요특허 전체 87 66 75.9% 20
둘째 1 논문·특허 지표별 세부 결과

논문·특허의 활동력(양적) 지표별 세부결과

<table>
<thead>
<tr>
<th></th>
<th>논문 점유율</th>
<th>특허 점유율</th>
<th>논문 증가율</th>
<th>특허 증가율</th>
<th>해외출원도</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>4위 5.7%</td>
<td>3위 17.3%</td>
<td>4위 425.0%</td>
<td>2위 6,500.0%</td>
<td>5위 1.80</td>
<td>4위 11</td>
</tr>
<tr>
<td>중국</td>
<td>1위 34.3%</td>
<td>1위 32.7%</td>
<td>1위 1,242.9%</td>
<td>1위 12,300.0%</td>
<td>4위 2.17</td>
<td>1위 31</td>
</tr>
<tr>
<td>일본</td>
<td>5위 4.3%</td>
<td>4위 12.8%</td>
<td>5위 180.0%</td>
<td>4위 4,800.0%</td>
<td>1위 3.47</td>
<td>5위 10</td>
</tr>
<tr>
<td>EU</td>
<td>2위 31.0%</td>
<td>5위 8.6%</td>
<td>2위 853.8%</td>
<td>5위 3,200.0%</td>
<td>2위 3.33</td>
<td>3위 29</td>
</tr>
<tr>
<td>미국</td>
<td>3위 24.8%</td>
<td>2위 28.5%</td>
<td>3위 795.5%</td>
<td>3위 5,250.0%</td>
<td>3위 2.99</td>
<td>1위 31</td>
</tr>
<tr>
<td>평균</td>
<td>-</td>
<td>-</td>
<td>816.1%</td>
<td>12,533.3%</td>
<td>2.61</td>
<td>22</td>
</tr>
</tbody>
</table>

논문·특허의 기술력(분석) 지표별 세부결과

<table>
<thead>
<tr>
<th></th>
<th>논문 영향력</th>
<th>특허 영향력</th>
<th>중요논문* 비율</th>
<th>중요특허** 비율</th>
<th>연구주제 다양도</th>
<th>IP4 점유율</th>
<th>특허 청구량</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>5위 11.22%</td>
<td>5위 1.67%</td>
<td>4위 5.1%</td>
<td>5위 6.9%</td>
<td>5위 0.72%</td>
<td>4위 8.5%</td>
<td>5위 10.00</td>
</tr>
<tr>
<td>중국</td>
<td>4위 11.90%</td>
<td>3위 4.45%</td>
<td>1위 33.8%</td>
<td>2위 25.7%</td>
<td>2위 0.81%</td>
<td>1위 36.2%</td>
<td>4위 12.93</td>
</tr>
<tr>
<td>일본</td>
<td>2위 18.61%</td>
<td>2위 4.68%</td>
<td>5위 3.7%</td>
<td>3위 20.8%</td>
<td>4위 0.74%</td>
<td>2위 25.5%</td>
<td>3위 16.00</td>
</tr>
<tr>
<td>EU</td>
<td>3위 14.37%</td>
<td>4위 3.71%</td>
<td>3위 27.2%</td>
<td>4위 7.6%</td>
<td>1위 0.93%</td>
<td>4위 8.5%</td>
<td>1위 20.50</td>
</tr>
<tr>
<td>미국</td>
<td>1위 22.20%</td>
<td>1위 5.29%</td>
<td>2위 30.1%</td>
<td>1위 38.9%</td>
<td>3위 0.81%</td>
<td>3위 21.3%</td>
<td>2위 18.86</td>
</tr>
<tr>
<td>평균</td>
<td>15.47%</td>
<td>4.78%</td>
<td>-</td>
<td>-</td>
<td>0.84%</td>
<td>-</td>
<td>15.17</td>
</tr>
</tbody>
</table>
봉인 2 논문·특허 기술세례도

<table>
<thead>
<tr>
<th>논문 기술세례도</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>A real-time motion planner with trajectory optimization for autonomous vehicles</td>
</tr>
<tr>
<td>발행기관(국적)</td>
</tr>
<tr>
<td>Peking University</td>
</tr>
<tr>
<td>발행년도</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>Autonomous vehicles control in the VisLab Intercontinental Autonomous Challenge</td>
</tr>
<tr>
<td>발행기관(국적)</td>
</tr>
<tr>
<td>Università degli Studi di Parma (이탈리아)</td>
</tr>
<tr>
<td>발행년도</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>발행기관(국적)</td>
</tr>
<tr>
<td>University of Porto (포르투갈)</td>
</tr>
<tr>
<td>발행년도</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>Dynamic motion planning for autonomous vehicles in unknown environments</td>
</tr>
<tr>
<td>발행기관(국적)</td>
</tr>
<tr>
<td>Chinese Academy of Sciences (중국)</td>
</tr>
<tr>
<td>발행년도</td>
</tr>
<tr>
<td>2011</td>
</tr>
</tbody>
</table>
특허 기술 흐름도

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>발명의 명칭</td>
<td>Dynamic learning driving system and method</td>
<td>Method and system for human-like vehicle control prediction in autonomous driving vehicles</td>
<td>Multi-task machine-learned models for object intention determination in autonomous driving</td>
</tr>
<tr>
<td>출원인 (곡석)</td>
<td>SIVALOGESWARAN RATNASINGAM (호주)</td>
<td>PLUSUL LIMITED (중국)</td>
<td>UBER TECHNOLOGIES (캐나다)</td>
</tr>
<tr>
<td>출원년도</td>
<td>2015</td>
<td>2017</td>
<td>2019</td>
</tr>
<tr>
<td>발명의 명칭</td>
<td>Driving profiles for autonomous vehicles</td>
<td>Autonomous driving system component fault prediction</td>
<td>Multi-task machine-learned models for object intention determination in autonomous driving</td>
</tr>
<tr>
<td>출원인 (곡석)</td>
<td>INHO XING (미국)</td>
<td>TESLA (미국)</td>
<td>UBER TECHNOLOGIES (캐나다)</td>
</tr>
<tr>
<td>출원년도</td>
<td>2016</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>발명의 명칭</td>
<td>Efficient driver action prediction system based on temporal fusion of sensor data using deep (bidirectional) recurrent</td>
<td>Method and system for vehicle-related driver characteristic determination</td>
<td>Generating targeted training instances for autonomous vehicles</td>
</tr>
<tr>
<td>출원인 (곡석)</td>
<td>TOYOTA MOTOR (일본)</td>
<td>ZENDRIVE (미국)</td>
<td>AURORA INNOVATION (미국)</td>
</tr>
<tr>
<td>출원년도</td>
<td>2016</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>발명의 명칭</td>
<td>Accurately determining real time parameters describing vehicle motion based on multiple data sources</td>
<td>Method and system for providing behavior of vehicle operator using virtuous cycle</td>
<td>Generating targeted training instances for autonomous vehicles</td>
</tr>
<tr>
<td>출원인 (곡석)</td>
<td>ATHENA VISION, LLC. (미국)</td>
<td>XEVO (일본)</td>
<td>AURORA INNOVATION (미국)</td>
</tr>
<tr>
<td>출원년도</td>
<td>2016</td>
<td>2017</td>
<td>2019</td>
</tr>
<tr>
<td>비결원</td>
<td>동작 학습 주행</td>
<td>자율주행 오송 감지</td>
<td>자율주행 안타테스킹</td>
</tr>
</tbody>
</table>
토큰 정리 (기관, 성과) 분석 결과

<table>
<thead>
<tr>
<th>발행기관</th>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>TONGJI UNIVERSITY (중국)</td>
<td>Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment</td>
<td>2019</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Review on Motion Control of Autonomous Vehicles</td>
<td>2020</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Architecture design and implementation of an autonomous vehicle</td>
<td>2018</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>A Multimodality Fusion Deep Neural Network and Safety Test Strategy for Intelligent Vehicles</td>
<td>2021</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Path tracking control of 4-wheel-steering autonomous ground vehicles based on linear parameter-varying system with experimental verification</td>
<td>2021</td>
<td>19</td>
</tr>
<tr>
<td>TSINGHUA UNIVERSITY (중국)</td>
<td>Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits</td>
<td>2018</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles</td>
<td>2020</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Behavioral decision-making model of the intelligent vehicle based on driving risk assessment</td>
<td>2021</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Centralized cooperative intersection control under automated vehicle environment</td>
<td>2017</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Research on decision-making of autonomous vehicle following based on reinforcement learning method</td>
<td>2019</td>
<td>13</td>
</tr>
<tr>
<td>UNIVERSITY OF MICHIGAN (미국)</td>
<td>Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment</td>
<td>2021</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Failing to Learn: Autonomously Identifying Perception Failures for Self-Driving Cars</td>
<td>2018</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Egocentric vision-based future vehicle localization for intelligent driving assistance systems</td>
<td>2019</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Design and comparison of fuel-saving speed planning algorithms for automated vehicles</td>
<td>2018</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Modeling dispositional and initial learned trust in automated vehicles with predictability and explainability</td>
<td>2021</td>
<td>18</td>
</tr>
</tbody>
</table>
(1) TONGJI UNIVERSITY

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment</td>
<td>2019</td>
<td>50</td>
</tr>
</tbody>
</table>

Abstract

Automated vehicles (AVs) are deemed to be the key element for the intelligent transportation system in the future. Many studies have been made to improve AVs’ ability of environment recognition and vehicle control, while the attention paid to decision making is not enough and the existing decision algorithms are very preliminary. Therefore, a framework of the decision-making training and learning is put forward in this paper. It consists of two parts: the deep reinforcement learning (DRL) training program and the high-fidelity virtual simulation environment. Then the basic microscopic behavior, car-following (CF), is trained within this framework. In addition, theoretical analysis and experiments were conducted to evaluate the proposed reward functions for accelerating training using DRL. The results show that on the premise of driving comfort, the efficiency of the trained AV increases 7.9% and 3.8% respectively compared to the classical adaptive cruise control models, intelligent driver model and constant-time headway policy. Moreover, on a more complex three-lane section, we trained an integrated model combining both CF and lane-changing behavior, with the average speed further growing 2.4%. It indicates that our framework is effective for AV's decision-making learning. © 2019 Elsevier Ltd

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review on Motion Control of Autonomous Vehicles [无人驾驶车辆的运动控制发展现状综述]</td>
<td>2020</td>
<td>33</td>
</tr>
</tbody>
</table>

Abstract

The motion control problem of autonomous vehicles is reviewed. From the perspective of model, algorithm, and control structure, the domestic and foreign research progress is reviewed at three levels of longitudinal motion control, path following and trajectory tracking control, and the development prospect of motion control technology for autonomous vehicles is proposed. The current motion control research mainly focuses on normal conditions. In order to realize the potential of autonomous vehicles in handling critical scenarios that human drivers find challenging or lack the ability to navigate, it is necessary to extend the research to extreme working conditions. However, the properties of non-linearity and multi-dimensional coupled dynamics are significantly enhanced in extreme working conditions. The requirements of system modeling and adaptability and robustness of motion control algorithm are further increased. At the same time, in order to deal with the multi-objective coordination in complex scenarios, the integration of motion planning and control considering environmental uncertainty needs to be studied in depth. Adding actuators can increase the lateral response speed and control margin, but the research of control allocation of redundant and heterogeneous actuators is still to be broken through. The realization of motion control depends on road adhesion coefficient, sideslip angle, etc. Therefore, it is urgent to solve the problem of key state and parameter estimation under multi-source sensor information fusion. In addition, the application of machine learning to the field of vehicle motion control is also an important development direction. © 2020 Journal of Mechanical Engineering.
<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture design and implementation of an autonomous vehicle</td>
<td>2018</td>
<td>29</td>
</tr>
</tbody>
</table>

Abstract

Architecture design is one of the most important problems for an intelligent system. In this paper, a practical framework of hardware and software is proposed to reveal the external configuration and internal mechanism of an autonomous vehicle – a typical intelligent system. The main contributions of this paper are as follows. First, we compare the advantages and disadvantages of three typical sensor plans and introduce a general autopilot for a vehicle. Second, we introduce a software architecture for an autonomous vehicle. The perception and planning performances are improved with the help of two inner loops of simultaneous localization and mapping. An algorithm to enlarge the detection range of the sensors is proposed by adding an inner loop to the perception system. A practical feedback to restrain mutations of two adjacent planning periods is also realized by the other inner loop. Third, a cross-platform virtual server (named project cocktail) for data transmission and exchange is presented in detail. Through comparisons with the robot operating system, the performance of project cocktail is proven to be considerably better in terms of transmission delay and throughput. Finally, a report on an autonomous driving test implemented using the proposed architecture is presented, which shows the effectiveness, flexibility, stability, and low-cost of the overall autonomous driving system. © 2013 IEEE.

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Multimodality Fusion Deep Neural Network and Safety Test Strategy for Intelligent Vehicles</td>
<td>2021</td>
<td>23</td>
</tr>
</tbody>
</table>

Abstract

Multimodality fusion based on deep neural networks (DNN) is a significant method for intelligent vehicles. The special characteristics of DNN lead to the issue of AI safety and safety test. In this paper, we firstly propose a multimodality fusion framework called Integrated Multimodality Fusion Deep Neural Network (IMF–DNN), which can flexibly accomplish both object detection and end-to-end driving policy for prediction of steering angle and speed. Then, we propose a DNN safety test strategy, which systematically analyzes DNN’s robustness and generalization ability in large amounts of diverse driving environment conditions. The test in this paper is based on our IMF–DNN model and the strategy can be widely used for other DNNs. Finally, the experiment analysis is performed on KITTI for object detection and the dataset DBNet for end-to-end tasks. The results show the superior accuracy of the proposed IMF–DNN model and the test strategy’s potential ability to improve the robustness and generalization of autonomous vehicle deep learning model. Code is available at https://github.com/ennisnie/IMF–DNN © 2016 IEEE.
In this study, a novel 4-wheel-steering electric vehicle is proposed as an autonomous ground vehicle. It aims to study the path tracking control algorithm of the 4-wheel-steering autonomous ground vehicle for intelligent driving. Path tracking model is built for path tracking controller design based on a single track model. Besides, the linear parameter-varying system model is constructed to make the path tracking controller adaptive to different longitudinal velocities and road friction coefficients. Furthermore, a linear quadratic regulator controller for path tracking is designed and stability analysis is carried out. To eliminate the error caused by disturbance, feedforward control is combined with a linear quadratic regulator controller. To verify the path tracking performance of the designed controller, numerical simulations are carried out based on a high-fidelity and full-vehicle model constructed in CarSim. Moreover, real road experiments are performed. Both the simulation results and experiment results show that the designed controller has good path tracking performance. In addition, the path tracking controller shows good robustness to deal with different longitudinal velocities and road friction coefficients. © IMechE 2020.

(2) TSINGHUA UNIVERSITY

Abstract

Parametric modeling uncertainties and unknown external disturbance are major concerns in the development of advanced lateral motion controller for autonomous vehicle at the limits of driving conditions. Considering that tyre operating at or close to its physical limits of friction exhibits highly nonlinear force response and that unknown external disturbance can be caused by changing driving conditions, this paper presents a novel lateral motion control method that can maintain the yaw stability of autonomous vehicle while minimizing lateral path tracking error at the limits of driving conditions. The proposed control scheme consists of a robust steering controller and an adaptive neural network (ANN) approximator. First, based on reference path model, dynamics model and kinematics model of vehicle, the robust steering controller is developed via backstepping variable structure control (BVSC) to suppress lateral path tracking deviation, to withstand unknown external disturbance and guarantee the yaw stability of autonomous vehicle. Then, by combining adaptive control mechanism based on Lyapunov stability theory and radial basis function neural network (RBFNN), the ANN approximator is designed to estimate uncertainty of tyre cornering stiffness and reduce its adverse effects by learning to approximate arbitrary nonlinear functions, and it ensures the uniform ultimate boundedness of the closed-loop system. Both simulation and experiment results show that the proposed control strategy can robustly track the reference path and at the same time maintains the yaw stability of vehicle at or near the physical limits of tyre friction. © 2018 Elsevier Ltd
Title

| A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles | 2020 | 42 |

Abstract

Autonomous vehicles (AVs) being an essential component of the future smart city traffic system is a hot topic in recent years, even though it is still in its development stage. It is conceivable that in the near future, AVs and human-driven vehicles (HVs) will have to co-exist in traffic systems. This is the first paper to study a mixed traffic system from a micro perspective based on the cellular automation model. In this system, by the use of sensors or mutual information exchange, each AV will have a ‘foresight’ and will be able to know the speeds and positions of vehicles in front of it. In the circular road scenario, we studied how the traffic capacity is influenced by the degree of foresight, the ratio of AVs to HVs, vehicle density, and the probability of random deceleration of HVs. Then we came up with the below conclusions: (a) The optimal foresight is \(k=5 \). An AV only needs to gather the information of the 5 vehicles in front of it. (b) The two critical factors to measure the capacity of a traffic network are the critical vehicle density and the maximum average flow. When the ratio of AVs to HVs is increased, these two critical factors increase at an accelerating rate. (c) Even if a low ratio of HVs is running in the system, it will have an appreciable negative impact. An increased probability of random deceleration can expand the hysteresis loop range and reduce average flow. (d) Within a specific range of vehicle density, there is an optimal ratio of AVs at which the traffic system has the maximum average flow. This has implications in controlling the ratio of AVs. Finally, theoretical solutions of critical vehicle density are obtained by using the mean-field theory in physics. If the vehicle density is larger than these critical values, the traffic system will be in a deadlock state, and all vehicles cannot move. These formulas are crucial to controlling the density and the ratio of AVs and HVs in future intelligent traffic systems and will help to avoid large-scale traffic congestion. The above findings will have practical ramifications for precise traffic management and traffic control in a mixed AV and HVs system. © 2020

Title

| Behavioral decision-making model of the intelligent vehicle based on driving risk assessment | 2021 | 16 |

Abstract

Intelligent-driving technologies play crucial roles in reducing road-traffic accidents and ensuring more convenience while driving. One of the significant challenges in developing an intelligent vehicle is how to operate it safely without causing fear in other human drivers. This paper presents a new behavioral decision-making model to achieve both safety and high efficiency and also to reduce the adverse effect of autonomous vehicles on the other road users while driving. Moreover, we attempt to adapt the model for human drivers so that users can understand, adapt, and utilize intelligent-driving technologies. Furthermore, this paper proposes a combined spring model for assessing driving risk. Thus, we analyze some driving characteristics of drivers and choose “safety” and “high efficiency” as the two main factors that are pursued by drivers while driving. Based on the principle of least action, a multiobjective optimization cost function is established for the decision-making model. Finally, we design six unprotected left-turn scenarios at a T-intersection and three unprotected left-turn scenarios at a standard two-lane intersection for applying simulation algorithm and provide a decision-making map for developing intelligent-driving technologies. Based on the principle of least action, this paper demonstrates that optimization theory can give insight into drivers’ behavior and can also contribute to the development of intelligent-driving algorithms. The experimental results reveal that the behavioral decision-making model can always avoid collision accidents on the premise of ensuring certain efficiency, and it can achieve 97.01%, 94.52%, 96.67%, 91.18%, 101.27%, 83.33%, 102.94%, 103.03%, and 105.77% of time to intersection’s maximum pass rate in the considered nine scenarios. © 2019 Computer-Aided Civil and Infrastructure Engineering
Title
Centralized cooperative intersection control under automated vehicle environment

Year
2017

Cited by
14

Abstract
With the rapid development in vehicular communication technologies, cooperative driving of intelligent vehicles can provide promising efficiency, safety and sustainability to the intelligent transportation systems. In this paper, a centralized cooperative intersection control (CCIC) approach is proposed for the non–signalized intersections under automated vehicle environment. The cooperative intersection control problem is converted to a nonlinear constrained programming problem considering vehicle delay, fuel consumption, emission and driver comfort level. Furthermore, a simulation–based case study is carried out on a four–legged, two–lane non–signalized intersection under different traffic volume scenarios to compare CCIC with the actuated intersection control (AIC) system. The results indicate that the CCIC approach shows significant potential improvements on the traffic efficiency (i.e., nearly 14% of traffic flow increase, nearly 90% of travelling time saving), emission (nearly 60% of CO2 reduction) and driver comfort level (nearly 2% of comfort level increase). © 2017 IEEE.

Title
Research on decision–making of autonomous vehicle following based on reinforcement learning method

Year
2019

Cited by
13

Abstract
Purpose: Over the past decades, there has been significant research effort dedicated to the development of autonomous vehicles. The decision–making system, which is responsible for driving safety, is one of the most important technologies for autonomous vehicles. The purpose of this study is the use of an intensive learning method combined with car–following data by a driving simulator to obtain an explanatory learning following algorithm and establish an anthropomorphic car–following model. Design/methodology/approach: This paper proposed car–following method based on reinforcement learning for autonomous vehicles decision–making. An approximator is used to approximate the value function by determining state space, action space and state transition relationship. A gradient descent method is used to solve the parameter. Findings: The effect of car–following on certain driving styles is initially achieved through the simulation of step conditions. The effect of car–following initially proves that the reinforcement learning system is more adaptive to car following and that it has certain explanatory and stability based on the explicit calculation of R. Originality/value: The simulation results show that the car–following method based on reinforcement learning for autonomous vehicle decision–making realizes reliable car–following decision–making and has the advantages of simple sample, small amount of data, simple algorithm and good robustness. © 2019, Emerald Publishing Limited.
(3) UNIVERSITY OF MICHIGAN

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligent driving intelligence test for autonomous vehicles with</td>
<td>2021</td>
<td>50</td>
</tr>
<tr>
<td>naturalistic and adversarial environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Driving intelligence tests are critical to the development and deployment of autonomous vehicles. The prevailing approach tests autonomous vehicles in life-like simulations of the naturalistic driving environment. However, due to the high dimensionality of the environment and the rareness of safety-critical events, hundreds of millions of miles would be required to demonstrate the safety performance of autonomous vehicles, which is severely inefficient. We discover that sparse but adversarial adjustments to the naturalistic driving environment, resulting in the naturalistic and adversarial driving environment, can significantly reduce the required test miles without loss of evaluation unbiasedness. By training the background vehicles to learn when to execute what adversarial maneuver, the proposed environment becomes an intelligent environment for driving intelligence testing. We demonstrate the effectiveness of the proposed environment in a highway-driving simulation. Comparing with the naturalistic driving environment, the proposed environment can accelerate the evaluation process by multiple orders of magnitude. © 2021, The Author(s).

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failing to Learn: Autonomously Identifying Perception Failures for</td>
<td>2018</td>
<td>49</td>
</tr>
<tr>
<td>Self-Driving Cars</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

One of the major open challenges in self-driving cars is the ability to detect cars and pedestrians to safely navigate in the world. Deep learning-based object detector approaches have enabled great advances in using camera imagery to detect and classify objects. But for a safety critical application, such as autonomous driving, the error rates of the current state of the art are still too high to enable safe operation. Moreover, the characterization of object detector performance is primarily limited to testing on prerecorded datasets. Errors that occur on novel data go undetected without additional human labels. In this letter, we propose an automated method to identify mistakes made by object detectors without ground truth labels. We show that inconsistencies in the object detector output between a pair of similar images can be used as hypotheses for false negatives (e.g., missed detections) and using a novel set of features for each hypothesis, an off-the-shelf binary classifier can be used to find valid errors. In particular, we study two distinct cues—temporal and stereo inconsistencies – using data that are readily available on most autonomous vehicles. Our method can be used with any camera-based object detector and we illustrate the technique on several sets of real world data. We show that a state-of-the-art detector, tracker, and our classifier trained only on synthetic data can identify valid errors on KITTI tracking dataset with an average precision of 0.94. We also release a new tracking dataset with 104 sequences totaling 80,655 labeled pairs of stereo images along with ground truth disparity from a game engine to facilitate further research. © 2016 IEEE.
Abstract
Predicting the future location of vehicles is essential for safety-critical applications such as advanced driver assistance systems (ADAS) and autonomous driving. This paper introduces a novel approach to simultaneously predict both the location and scale of target vehicles in the first-person (egocentric) view of an ego-vehicle. We present a multi-stream recurrent neural network (RNN) encoder-decoder model that separately captures both object location and scale and pixel-level observations for future vehicle localization. We show that incorporating dense optical flow improves prediction results significantly since it captures information about motion as well as appearance change. We also find that explicitly modeling future motion of the ego-vehicle improves the prediction accuracy, which could be especially beneficial in intelligent and automated vehicles that have motion planning capability. To evaluate the performance of our approach, we present a new dataset of first-person videos collected from a variety of scenarios at road intersections, which are particularly challenging moments for prediction because vehicle trajectories are diverse and dynamic. Code and dataset have been made available at: https://usa.honda-ri.com/hevi. © 2019 IEEE.

Abstract
Intelligent planning and accurate execution of connected automated vehicles (CAVs) enable not only improved traffic safety but also better fuel economy. This paper presents two longitudinal speed planning algorithms for fuel-saving driving on highways with varying road slopes. One is designed on the top of the model predictive control (MPC) and the other is called equivalent kinetic–energy and fuel conversion method. The MPC algorithm solves the optimal speed profile in a receding finite horizon with repeated optimization, which is numerically solved by the Legendre pseudospectral method. The latter is designed based on an instantaneous optimization, which considers vehicle kinetic energy an admissible power source, and then minimizes a weighted sum of fuel energy and kinetic energy. This strategy is capable of generating analytical rules to get the economical speed as well as the corresponding commands of the engine, transmission, and brake. The two algorithms are featured by near–global optimization and local optimization, respectively. Their performances in fuel economy and computational load are quantitatively explored and compared in order to distinguish the potential of real implementation in CAVs. © 2013 IEEE.

Abstract
Technological advances in the automotive industry are bringing automated driving closer to road use. However, one of the most important factors affecting public acceptance of automated vehicles (AVs) is the public’s trust in AVs. Many factors can influence people’s trust, including perception of risks and benefits, feelings, and knowledge of AVs. This study aims to use these factors to predict people’s dispositional and initial learned trust in AVs using a survey study conducted with 1175 participants. For each participant, 23 features were extracted from the survey questions to capture his/her knowledge, perception, experience, behavioral assessment, and feelings about AVs. These features were then used as input to train an eXtreme Gradient Boosting (XGBoost) model to predict trust in AVs. With the help of SHapley Additive exPlanations (SHAP), we were able to interpret the trust predictions of XGBoost to further improve the explainability of the XGBoost model. Compared to traditional regression models and black-box machine learning models, our findings show that this approach was powerful in providing a high level of explainability and predictability of trust in AVs, simultaneously. © 2020 Elsevier Ltd
특허 TOP3 출원인 성과 분석 요약

<table>
<thead>
<tr>
<th>출원인</th>
<th>발명의 명칭</th>
<th>공개/등록번호 (등록/공개일)</th>
<th>법적상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>옐지전자 (한국)</td>
<td>차량 주행 제어 장치 및 방법(apparatus and method for controlling the driving of a vehicle)</td>
<td>KR2019–0104474 (2019.09.10)</td>
<td>공개</td>
</tr>
<tr>
<td></td>
<td>Autonomous vehicle and pedestrian guidance system and method using the same</td>
<td>US2021–0078598 (2021.03.18)</td>
<td>공개</td>
</tr>
<tr>
<td></td>
<td>Artificial intelligence mobility device control method and intelligent computing device controlling ai mobility</td>
<td>US2021–0188311 (2021.06.24)</td>
<td>공개</td>
</tr>
<tr>
<td></td>
<td>Artificial intelligence mobility device control method and intelligent computing device controlling ai mobility</td>
<td>US2021–0188311 (2021.06.24)</td>
<td>공개</td>
</tr>
<tr>
<td>TOYOTA MOTOR (일본)</td>
<td>Efficient driver action prediction system based on temporal fusion of sensor data using deep (bidirectional) recurrent neural network</td>
<td>US11120353 (2021.09.14)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Driving assistance method and system</td>
<td>US2019–0329763 (2019.10.31)</td>
<td>공개</td>
</tr>
<tr>
<td></td>
<td>Systems and methods for promoting driver engagement using active feedback</td>
<td>US10586454 (2020.03.10)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Driver state detection based on glycemic condition</td>
<td>US10583842 (2020.03.10)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Control device, system and method for determining the perceptual load of a visual and dynamic driving scene</td>
<td>US10963741 (2021.03.30)</td>
<td>등록</td>
</tr>
<tr>
<td>Baidu (중국)</td>
<td>Evaluation framework for decision making of autonomous driving vehicle</td>
<td>US10421460 (2019.09.24)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Alarm system of autonomous driving vehicles (advs)</td>
<td>US11040726 (2021.06.22)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Method for predicting movement of moving objects relative to an autonomous driving vehicle</td>
<td>US11305765 (2022.04.19)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>St-graph learning based decision for autonomous driving vehicle</td>
<td>US10809736 (2020.10.20)</td>
<td>등록</td>
</tr>
<tr>
<td></td>
<td>Group driving style learning framework for autonomous vehicles</td>
<td>US11238733 (2022.02.01)</td>
<td>등록</td>
</tr>
</tbody>
</table>
(1) 搽址 casos

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량 주행 제어 장치 및 방법(apparatus and method for controlling the driving of a vehicle)</td>
<td>KR2019-0104474 (2019.09.10)</td>
<td>공개</td>
<td>8</td>
</tr>
</tbody>
</table>

요약
사물 인터넷을 위해 연결된 5G 환경에서 인공지능(artificial intelligence, AI) 알고리즘 및/또는 기계학습(machine learning) 알고리즘을 실행하여 차량 주행 제어 장치를 동작시키는 차량 주행 제어 방법이 개발된다. 본 발명의 일 실시 예에 따른 차량 주행 제어 방법, 차량을 기준으로 일정 거리 내에 위치하는 근정 차량을 확인하는 단계와, 차량의 차량정보와 도로 교통 정보를 포함하는 주행환경정보와, 근정 차량 중 자차의 전방에 위치한 전방차량의 차량정보 및 자차의 후방에 위치한 후방차량의 차량정보 중 적어도 하나를 획득하는 단계와, 차량의 주행환경정보와, 전방차량 또는 후방차량의 차량정보에 기초하여 차량의 차량정보를 유지하도록 차량을 적응적 크루즈 모드로 제어하는 단계와, 자차와 전방차량 간의 거리 또는 차차와 후방차량 간의 거리가 기 설정된 거리로 유지 불가능한 경우, 차량을 적응적 회피 모드로 제어하는 단계를 포함할 수 있다.

대표청구항

[청구항1] 차량 주행 제어 장치의 제어 방법으로서 자차를 기준으로 일정 거리 내에 위치하는 근정 차량을 확인하는 단계,
상기 자차의 차량정보와 도로 교통 정보를 포함하는 주행환경정보와, 상기 근정 차량 중 상기 자차의 전방에 위치한 전방차량의 차량정보 및 상기 자차의 후방에 위치한 후방차량의 차량정보 중 적어도 하나를 획득하는 단계, 상기 자차의 주행환경정보와, 상기 전방차량 또는 상기 후방차량의 차량정보에 기초하여 상기 자차와 상기 전방차량 또는 후방차량 간의 거리가 기 설정된 거리를 유지하도록 상기 자차를 적응적 크루즈 모드로 제어하는 단계, 및 상기 자차와 상기 전방차량 간의 거리 또는 상기 자차와 상기 후방차량 간의 거리가 기 설정된 거리로 유지 불가능한 경우, 상기 자차를 적응적 회피 모드로 제어하는 단계를 포함하는 차량 주행 제어 방법.

표명 명칭	공개/등록번호	법적상태	피인용문 현수

요약
Disclosed is a method for controlling driving of a vehicle operating an apparatus for controlling driving of a vehicle by executing an artificial intelligence (AI) algorithm and/or machine learning algorithm in a 5G environment connected for the Internet of Things. The method for controlling driving of a vehicle may include controlling a host vehicle in an adaptive cruise mode so that a distance between the host vehicle and a preceding vehicle or a following vehicle is maintained within a predetermined distance based on a driving environment information of the host vehicle and a vehicle information of the preceding vehicle or the following vehicle, and controlling the host vehicle in an adaptive avoidance mode when the distance between the host vehicle and the preceding vehicle or the distance between the host vehicle and the following vehicle is not maintained within the predetermined distance.

대표청구항

[청구항1] 1. A method for controlling an apparatus for controlling driving of a vehicle, comprising: checking approaching vehicles located in a predetermined distance with respect to a host vehicle; acquiring at least one of driving environment information comprising vehicle information of the host vehicle and road traffic information, vehicle information of a preceding vehicle located in front of the host vehicle among the approaching vehicles, or vehicle information of a following vehicle located behind the host vehicle: controlling the host vehicle in an adaptive cruise mode so that a distance between the host vehicle and the preceding vehicle or the following vehicle is maintained within a predetermined distance based on the driving environment information of the host vehicle and the vehicle information of the preceding vehicle or the following vehicle; and controlling the host vehicle in an adaptive avoidance mode when the distance between the host vehicle and the preceding vehicle, or the distance between the host vehicle and the following vehicle is not maintained within the predetermined distance.
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous vehicle and pedestrian guidance system and method using the same</td>
<td>US2021-0078598 (2021.03.18)</td>
<td>공개</td>
<td>2</td>
</tr>
</tbody>
</table>

요약

Disclosed are an autonomous vehicle and a pedestrian guidance system and method using the same. The pedestrian guidance system according to an embodiment of the present invention includes at least one autonomous vehicle for transmitting pedestrian information recognizing a pedestrian and indicating the pedestrian based on a signal received from the pedestrian terminal to other vehicle. At least one of an autonomous vehicle, a user terminal, and a server of the present invention may be connected to or fused with an Artificial Intelligence (AI) module, a drone (Unmanned Aerial Vehicle (UAV)), a robot, an augmented reality (AR) device, a virtual reality (VR) device, and a device related to a 5G service.

대표청구항

[청구항1] 1. An autonomous vehicle, comprising:a camera for photographing a pedestrian:a controller for recognizing a pedestrian location based on a signal received from a pedestrian terminal carried by the pedestrian and analyzing an image taken by the camera to determine a type of the pedestrian, and transmitting pedestrian information comprising the type of the pedestrian to other vehicle through a communication device: anda brake drive unit for decelerating a driving speed after recognition of the pedestrian under the control of the controller.

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial intelligence mobility device control method and intelligent computing device controlling ai mobility</td>
<td>US2021-0188311 (2021.06.24)</td>
<td>공개</td>
<td>1</td>
</tr>
</tbody>
</table>

요약

A method of controlling an artificial intelligence (AI) mobility device can include acquiring personal information of a driver and setting a driving level based on the personal information of the driver; acquiring driving information of the driver based on the driving level while the driver is driving; determining a skill status of the driver based on the driving information of the driver; applying road information corresponding to the skill status of the driver; and in response to determining that the skill status of the driver is lower than a predetermined reference based on the road information, outputting a warning and executing a function of the AI mobility device based on the warning.

대표청구항

[청구항1] 1. A method of controlling an artificial intelligence (AI) mobility device, the method comprising:acquiring personal information of a driver and setting a driving level based on the personal information of the driver;acquiring driving information of the driver based on the driving level while the driver is driving; determining a skill status of the driver based on the driving information of the driver;applying road information corresponding to the skill status of the driver; and in response to determining that the skill status of the driver is lower than a predetermined reference based on the road information, outputting a warning and executing a function of the AI mobility device based on the warning.
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial intelligence mobility device control method and intelligent</td>
<td>US2021-0188311</td>
<td>공개</td>
<td>1</td>
</tr>
<tr>
<td>computing device controlling ai mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

요약
A method of controlling an artificial intelligence (AI) mobility device can include acquiring personal information of a driver and setting a driving level based on the personal information of the driver; acquiring driving information of the driver based on the driving level while the driver is driving; determining a skill status of the driver based on the driving information of the driver; applying road information corresponding to the skill status of the driver; and in response to determining that the skill status of the driver is lower than a predetermined reference based on the road information, outputting a warning and executing a function of the AI mobility device based on the warning.

대표청구항
[청구항1] 1. A method of controlling an artificial intelligence (AI) mobility device, the method comprising: acquiring personal information of a driver and setting a driving level based on the personal information of the driver; acquiring driving information of the driver based on the driving level while the driver is driving; determining a skill status of the driver based on the driving information of the driver; applying road information corresponding to the skill status of the driver; and in response to determining that the skill status of the driver is lower than a predetermined reference based on the road information, outputting a warning and executing a function of the AI mobility device based on the warning.

(2) TOYOTA MOTOR
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient driver action prediction system based on temporal fusion</td>
<td>US11120353</td>
<td>등록</td>
<td>32</td>
</tr>
<tr>
<td>of sensor data using deep (bidirectional) recurrent neural network</td>
<td>(2021.09.14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

요약
By way of example, the technology disclosed by this document may be implemented in a method that includes receiving stored sensor data describing characteristics of a vehicle in motion at a past time and extracting features for prediction and features for recognition from the stored sensor data. The features for prediction may be input into a prediction network, which may generate a predicted label for a past driver action based on the features for prediction. The features for recognition may be input into a recognition network, which may generate a recognized label for the past driver action based on the features for recognition. In some instances, the method may include training prediction network weights of the prediction network using the recognized label and the predicted label.

대표청구항
[청구항1] 1. A computer-implemented method comprising: receiving, by one or more computing devices, stored sensor data, the stored sensor data describing characteristics of a vehicle in motion at a past time; extracting, by the one or more computing devices, features for prediction and features for recognition from the stored sensor data; inputting, by the one or more computing devices, the features for prediction into a prediction network, the prediction network including a classifier and a temporal fusion processor; generating, by the one or more computing devices, a predicted label for a past driver action based on the features for prediction using an output of the temporal fusion processor and the classifier of the prediction network; inputting, by the one or more computing devices, the features for recognition into a recognition network, the recognition network including one or more trained recognition models that recognize user actions based on the extracted features for recognition; generating, by the one or more computing devices, a recognized label for the past driver action based on the features for recognition using the recognition network; and training, by the one or more computing devices, one or more prediction network weights of the prediction network including automatically inputting the predicted label generated by the prediction network and the recognized label generated by the recognition network into a training network and using an error between the recognized label and the predicted label, the predicted label being generated using the classifier of the prediction network and the output of the temporal fusion processor.
Table 1:发明의 명칭, 공개/등록번호(공개/등록일), 법적상태, 피인용문 현수

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving assistance method and system</td>
<td>US2019-0329763 (2019.10.31)</td>
<td>공개</td>
<td>13</td>
</tr>
</tbody>
</table>

요약

The present invention concerns a driving assistance method and system (100) for a road vehicle (1). The driving assistance system (100) comprises a sensor set (101), a data storage device (102) and an output device (104, 105). The sensor set (101) detects, within a traffic scene including the road vehicle (1), a set of road users and, for each road user of said set of road users, a current state including a current speed and a current position. The data storage device (102) comprises a finite plurality of behavioral models. The data processor (103), which is connected to the sensor set (101) and to the data storage device (102), assigns a behavioral model, from among the finite plurality of behavioral models, to each road user, probabilistically estimates, for each road user, a belief state comprising a set of alternative subsequent states and corresponding probabilities, each alternative subsequent state including a speed and a position, according to the behavioral model assigned to each road user, and determines a risk of collision of the road vehicle (1) with a road user, based on the probabilistically estimated future state of each road user. The output device (104, 105) is connected to the data processor (103) and outputs a driver warning signal and/or executing an avoidance action if the risk of collision exceeds a predetermined threshold.

대표청구항

1. A driving assistance method for a road vehicle (1), the driving assistance method comprising the steps of: detecting, within a traffic scene including the road vehicle (1), a set of road users and, for each road user of the set of road users, a current state including a current speed and a current position; assigning a behavioral model, from among a finite plurality of behavioral models, to each road user of the set of road users; probabilistically estimating by a data processor (103), for each road user of the set of road users, a belief state comprising a set of alternative subsequent states and corresponding probabilities, each alternative subsequent state including a speed and a position, using the behavioral model assigned to each road user of the set of road users; determining a risk of collision of the road vehicle (1) with a road user of the set of road users, based on the probabilistically estimated belief state of each road user of the set of road users; and outputting a driver warning signal and/or executing an avoidance action if the risk of collision exceeds a predetermined threshold.
Systems and methods for promoting driver engagement using active feedback

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems and methods for promoting driver engagement using active feedback</td>
<td>US10586454 (2020.03.10)</td>
<td>등록</td>
<td>5</td>
</tr>
</tbody>
</table>

요약

System, methods, and other embodiments described herein relate to engaging a driver of a vehicle about driving behaviors. In one embodiment, a method includes computing predicted controls according to at least a defined skill level of the driver. The predicted controls indicate how to control the vehicle to maintain the vehicle along a driving path on a roadway. The method includes, in response to receiving manual control inputs from the driver, generating control feedback to the driver about the manual control inputs based, at least in part, on a difference between the manual control inputs and the predicted controls.

대표청구항

[항구항1] 1. A feedback system for engaging a driver of a vehicle about driving behaviors, comprising: one or more processors; a memory communicably coupled to the one or more processors and storing a controls module including instructions that when executed by the one or more processors cause the one or more processors to compute predicted controls to maintain the vehicle along a driving path on a roadway, the driving path is defined according to a defined skill level of the driver in relation to a range of skill levels for controlling the vehicle differently along the roadway, wherein the predicted controls indicate how to control the vehicle to perform maneuvers including steering, braking, and accelerator inputs corresponding with the defined skill level, and wherein the controls module includes instructions to compute the predicted controls for the driving path including instructions to generate the driving path to include the maneuvers within the defined skill level of the driver; and a feedback module including instructions that when executed by the one or more processors cause the one or more processors to, in response to receiving manual control inputs from the driver, generate control feedback to the driver about the manual control inputs based, at least in part, on a difference between the manual control inputs and the predicted controls, wherein the feedback module includes instructions to generate the control feedback including instructions to selectively provide reinforcing feedback and negative feedback according to whether the difference satisfies a threshold variance, wherein the controls module further includes instructions to determine a progression of the defined skill level of the driver over time according to at least a previous skill level of the driver, and wherein the feedback module includes the instructions to generate the control feedback according to the difference and the progression of the defined skill level of the driver to induce the driver to improve the defined skill level.
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver state detection based on glycemic condition</td>
<td>US10583842 (2020.03.10)</td>
<td>등록</td>
<td>4</td>
</tr>
</tbody>
</table>

요약

Embodiments of the disclosure relate to systems and methods for detecting driver state based on glucose levels of a driver of the vehicle. In one embodiment, a method of detecting driver state based on glucose levels of a driver of the vehicle includes receiving measurements of glucose levels of the driver from a continuous glucose monitoring (CGM) device and determining a glycemic state of the driver based on the measurements and a driving performance parameter based on the glycemic state. The method further includes determining a degree of impairment of the driver based on whether the driving performance parameter satisfies a predetermined threshold and determining a level of driver state severity based on driver performance characteristics, features of the driving environment, and the degree of impairment of the driver. A response is then activated based on the driver state severity.

대표청구항

[청구항1] 1. A method of detecting driver state based on glucose levels of a driver of the vehicle, the method comprising: receiving measurements of glucose levels of the driver from a continuous glucose monitoring (CGM) device; determining a glycemic state of the driver based on the measurements; determining a driving performance parameter based on the glycemic state; determining a degree of impairment of the driver based on whether the driving performance parameter satisfies a predetermined threshold by comparing with known values of the driving performance parameter at different glucose levels; determining a level of driver state severity based on driver performance characteristics, features of the driving environment, and the degree of impairment of the driver; and activating a response based on the driver state severity.

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control device, system and method for determining the perceptual load of a visual and dynamic driving scene</td>
<td>US10963741 (2021.03.30)</td>
<td>등록</td>
<td>2</td>
</tr>
</tbody>
</table>

요약

The invention relates to a control device (1) for a vehicle for determining the perceptual load of a visual and dynamic driving scene. The control device is configured to: receive a sensor output (101) of a sensor (3), the sensor (3) sensing the visual driving scene, extract a set of scene features (102) from the sensor output (101), the set of scene features (102) representing static and/or dynamic information of the visual driving scene, and determine the perceptual load (104) of the set of extracted scene features (102) based on a predetermined load model (103), wherein the load model (103) is predetermined based on reference video scenes each being labelled with a load value. The invention further relates to a system and a method.

대표청구항

[청구항1] 1. A control device for a vehicle for determining a perceptual load of a visual and dynamic driving scene, the control device being configured to: receive a sensor output of a sensor, the sensor sensing the visual driving scene, extract a set of scene features from the sensor output, the set of scene features representing static and/or dynamic information of the visual driving scene, and determine the perceptual load of the set of extracted scene features based on a predetermined load model, wherein the load model is predetermined based on reference video scenes each being labelled with a load value.
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 편수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation framework for decision making of autonomous driving vehicle</td>
<td>US10421460 (2019.09.24)</td>
<td>등록</td>
<td>12</td>
</tr>
</tbody>
</table>

요약

In one embodiment, systems and methods are disclosed for evaluating autonomous driving vehicle (ADV) driving decisions. A driving scenario is selected, such as a route or destination or type of driving condition. ADV planning and control modules are turned off and do not control the ADV. As a user drives the ADV, sensors detect and periodically log a plurality of objects external to the ADV. Driving control inputs of the human driver are also logged periodically. An ADV driving decision module generates driving decisions with respect to each object detected by the sensors. The ADV driving decisions are logged, but are not used to control the ADV. An ADV driving decision is identified in the logs, and a corresponding human driving decision is extracted, graded, and compared to the ADV driving decision. The ADV driving decision can be graded using the logs and graded human driving decision.

대표청구항

[청구항1] 1. A computer-implemented method, comprising: receiving a plurality of autonomous driving vehicle (ADV) logs; extracting a human driving decision corresponding to an ADV driving decision using the plurality of ADV logs; grading the human driving decision in accordance with a plurality of grading metrics; and generating a grade for the ADV driving decision that is based at least in part on the grade of the human driving decision and a comparison of the human driving decision to the ADV driving decision, wherein the grade for the ADV driving decision is utilized to modify algorithms for subsequent ADV driving.
In one embodiment, an intelligent and prompt alarm system is designed on autonomous driving vehicles to help autonomous driving vehicles to communicate to human drivers more vigilantly and promptly, and to improve human driver’s performance to take over when an autonomous driving failure occurs. In one embodiment, an alarm system can be developed several levels: 1) basic warning, 2) risk warning, and 3) emergency/take-over alarming.

적용대상

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm system of autonomous driving vehicles (advs)</td>
<td>US11040726 (2021.06.22)</td>
<td>등록</td>
<td>11</td>
</tr>
</tbody>
</table>

[청구항1] 1. A computer-implemented method for operating an autonomous driving vehicle (ADV), the method comprising: monitoring states of the ADV in an autonomous driving mode, using a plurality of sensors mounted on the ADV, wherein an ADV state is characterized by a speed, heading, and location of the ADV, and control inputs to the ADV: perceiving a driving environment surrounding the ADV using at least a portion of the sensors, the driving environment including speed and trajectory of one or more obstacles surrounding the ADV and including perceived traffic signs and signals: analyzing the states of the ADV in view of the driving environment surrounding the ADV to determine whether one or more driving conditions are satisfied; the driving conditions including whether ADV navigation is adhering to a reference line of a navigation path and whether the ADV navigation is in compliance with traffic laws; determining a risk assessment value for an ADV driving state, wherein the risk assessment value represents a probability of unsafe navigation of the ADV and an estimated severity of a driving outcome due to risks associated with the ADV state, driving conditions, and perceived environment surrounding the ADV, and the risk assessment value is based, at least in part, upon a risk model that correlates alarm levels, ADV states, driving environments, and driving conditions to a risk value; determining an alarm warning level, from a plurality of alarm warning levels, based on the risk value, driving conditions in view of a set of alarm warning rules, and an operating state of one or more ADV subsystems, wherein the determined alarm warning level is one of a plurality of alarm warning levels that include a basic warning level, a risk warning level, and an emergency warning level; generating an alarm to a driver of the ADV that a human driver is to be prepared to take over driving of the ADV, wherein the alarm is presented in a manner corresponding to the determined alarm warning level; recording the alarm warning level, recording the operating state of the one or more ADV subsystems, and in response to the human driver taking control of the ADV, recording human driver control inputs; generating an alarm warning level incident report, wherein the recording of the human driving control inputs continues until an alarm state ends: and uploading the incident report to a remote server to train an ADV navigation model how a human driving responded to the alarm according to the recorded human driving inputs.
<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method for predicting movement of moving objects relative to an autonomous driving vehicle</td>
<td>US11305765 (2022.04.19)</td>
<td>등록</td>
<td>4</td>
</tr>
</tbody>
</table>

요약

In response to perceiving a moving object, one or more possible object paths of the moving object are determined based on the prior movement predictions of the moving object, for example, using a machine–learning model, which may be created based on a large amount of driving statistics of different vehicles. For each of the possible object paths, a set of trajectory candidates is generated based on a set of predetermined accelerations. Each of the trajectory candidates corresponds to one of the predetermined accelerations. A trajectory cost is calculated for each of the trajectory candidates using a predetermined cost function. One of the trajectory candidates having the lowest trajectory cost amongst the trajectory candidates is selected. An ADV path is planned to navigate the ADV to avoid collision with the moving object based on the lowest costs of the possible object paths of the moving object.

대표청구항

[청구항1] 1. A computer–implemented method for operating an autonomous driving vehicle (ADV), the method comprising:in response to perceiving a moving object, determining one or more possible object paths based on prior movement predictions of the moving object;for each of the possible object paths,generating a set of trajectory candidates based on a set of predetermined accelerations,calculating a trajectory cost for each of the trajectory candidates using a predetermined cost function, andselecting one of the trajectory candidates with a lowest trajectory cost amongst the trajectory candidates to represent the possible object path; andplanning an ADV path to navigate the ADV to avoid collision with the moving object based on the lowest trajectory costs associated with the possible object paths of the moving object.

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>공개/등록번호 (공개/등록일)</th>
<th>법적상태</th>
<th>피인용문 현수</th>
</tr>
</thead>
<tbody>
<tr>
<td>St-graph learning based decision for autonomous driving vehicle</td>
<td>US10809736 (2020.10.20)</td>
<td>등록</td>
<td>3</td>
</tr>
</tbody>
</table>

요약

In one embodiment, a data processing system for an autonomous driving vehicle (ADV) includes a processor, and a memory coupled to the processor to store instructions, which when executed by the processor, cause the processor to perform operations. The operations include generating a station–time (ST) graph based on perception data obtained from one or more sensors of the ADV, the ST graph including representing a location of an obstacle at different points in time, obtaining a tensor based on the ST graph, the tensor including a plurality of layers, the plurality of layers including a first layer having data representing one or more obstacles on a path in which the ADV is moving, applying a machine–learning model to the plurality of layers of the tensor to generate a plurality of numerical values, the plurality of numerical values defining a potential path trajectory of the ADV, and determining a path trajectory of the ADV based on the plurality of numerical values.

대표청구항

[청구항1] 1. A computer–implemented method to determine a path trajectory for an autonomous driving vehicle (ADV), the method comprising:generating a station–time (ST) graph based on perception data obtained from one or more sensors of the ADV, the ST graph representing potential locations of an obstacle at different points in time;obtaining a tensor based on the ST graph, the tensor including a plurality of layers, the plurality of layers including a first layer having data representing one or more obstacles on a path in which the ADV is moving;applying a machine–learning model to the plurality of layers of the tensor to generate a plurality of numerical values, the plurality of numerical values defining a potential path trajectory of the ADV; anddetermining a path trajectory of the ADV based on the plurality of numerical values.
Group driving style learning framework for autonomous vehicles

A social driving style learning framework or system for autonomous vehicles is utilized, which can dynamically learn the social driving styles from surrounding vehicles and adopt the driving style as needed. Each of the autonomous vehicles within a particular driving area is equipped with the driving style learning system to perceive the driving behaviors of the surrounding vehicles to derive a set of driving style elements. Each autonomous vehicle transmits the driving style elements to a centralized remote server. The server aggregates the driving style elements collected from the autonomous vehicles to determine a driving style corresponding to that particular driving area. The server transmits the driving style back to each of the autonomous vehicles. The autonomous vehicles can then decide whether to adopt the driving style, for example, to follow the traffic flow with the rest of the vehicles nearby.

대표청구항

[참고항1] 1. A non-transitory machine-readable medium storing instructions, which when executed by a processor, cause the processor to perform operations of operating an autonomous vehicle, the operations comprising: perceiving, by a first autonomous vehicle, driving behaviors of one or more first surrounding vehicles, each of the one or more first surrounding vehicles surrounding the first autonomous vehicle; determining, for each of the one or more first surrounding vehicles, first information describing one or more driving style elements based on a driving behavior of the surrounding vehicle; transmitting second information describing a first set of driving style elements representing driving behaviors of the one or more first surrounding vehicles from the first autonomous vehicle to a second autonomous vehicle over a wireless network, the second information comprising some or all of the first information; receiving third information describing a second set of driving style elements from the second autonomous vehicle, the second set of driving style elements determined by the second autonomous vehicle based on a perception of driving behaviors of one or more second surrounding vehicles surrounding the second autonomous vehicle; determining a driving style based on at least some of the second information and at least some of the third information, wherein the driving style includes fourth information describing how the first autonomous vehicle should drive at a point in time in view of the one or more first surrounding vehicles, the one or more second surrounding vehicles, or both; and operating the first autonomous vehicle based on planning and control data generated based, at least in part, on the driving style, wherein operating the first autonomous vehicle comprises controlling the first autonomous vehicle, driving the first autonomous vehicle, or both.
블록 4 LLM 기반 논문·특허 분석 기워드 도출

논문·특허 데이터 기반 TF-IDF 분석 & LLM 분석을 통한 기워드 도출

- **TF-IDF (Term Frequency–Inverse Document Frequency)**: 특정 단어가 문서 집합에서 얼마나 중요한지를 평가하는 데 사용되는 통계적 수치 분석 기법
- 특정 단어가 문서 집합에서 얼마나 중요한지를 평가하는 데 사용되는 통계적 수치
- TF-IDF 분석 결과를 기반으로 LLM 기반 주요 기워드를 도출 (GPT 4.0) → 주요 기워드를 기반으로 확장 기워드를 도출 (GPT 4.0)

<table>
<thead>
<tr>
<th>주요 기워드</th>
<th>확장 기워드</th>
</tr>
</thead>
<tbody>
<tr>
<td>영문</td>
<td>국문</td>
</tr>
<tr>
<td>Autonomous Driving</td>
<td>자율주행</td>
</tr>
<tr>
<td>Vehicle Control Systems</td>
<td>차량 제어 시스템</td>
</tr>
<tr>
<td>Sensor Integration</td>
<td>센서 통합</td>
</tr>
<tr>
<td>Data Analytics for Driving</td>
<td>운전 데이터 분석</td>
</tr>
<tr>
<td>Self–Driving Vehicles</td>
<td>자율주행 차량</td>
</tr>
<tr>
<td>Driving Assistance Devices</td>
<td>운전 보조 장치</td>
</tr>
<tr>
<td>Autonomous Navigation</td>
<td>자율행동</td>
</tr>
<tr>
<td>Real–Time Traffic Information</td>
<td>실시간 교통 정보</td>
</tr>
<tr>
<td>Machine Learning in Driving</td>
<td>운전자의 기계 학습</td>
</tr>
<tr>
<td>Autonomous Vehicle Software</td>
<td>자율주행 차량 소프트웨어</td>
</tr>
<tr>
<td>Sensor Data Processing</td>
<td>센서 데이터 처리</td>
</tr>
<tr>
<td>Autonomous Vehicle Regulation</td>
<td>자율주행 차량 규제</td>
</tr>
<tr>
<td>Machine Learning Algorithms</td>
<td>기계 학습 알고리즘</td>
</tr>
<tr>
<td>Vehicle–to–Vehicle Communication</td>
<td>차량 간 통신</td>
</tr>
<tr>
<td>Real–Time Navigation Systems</td>
<td>실시간 항법 시스템</td>
</tr>
<tr>
<td>Traffic Management Systems</td>
<td>교통 관리 시스템</td>
</tr>
<tr>
<td>Road Safety Technologies</td>
<td>도로 안전 기술</td>
</tr>
<tr>
<td>Autonomous Driving Ethics</td>
<td>자율주행 윤리</td>
</tr>
<tr>
<td>Vehicle Telematics</td>
<td>차량 텔레마틱스</td>
</tr>
<tr>
<td>AI–based Decision Making</td>
<td>AI 기반 의사결정</td>
</tr>
</tbody>
</table>
논문: 특허 데이터 기반 LDA 분석 & LLM 분석을 통한 키워드 도출

- LDA (Latent Dirichlet Allocation) : 자연어 처리 분야에서 토픽이라는 문서 집합 텍스트의 숨겨진 의미 구조를 발견하기 위해 사용되는 텍스트 마이닝 기법
- 토픽 모델링의 일종으로 문서 집합에서 잠재적인 주제를 찾아내는 기법
- LDA 분석 결과를 기반으로 LLM 기반 주요 키워드를 도출 (GPT 4.0) → 주요 키워드를 기반으로 확장 키워드를 도출 (GPT 4.0)

<table>
<thead>
<tr>
<th>주요 키워드</th>
<th>확장 키워드</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Driving Systems</td>
<td>자율주행 시스템</td>
</tr>
<tr>
<td>Vehicle Lane Detection</td>
<td>차량 차선 감지</td>
</tr>
<tr>
<td>Speed Control Technologies</td>
<td>속도 제어 기술</td>
</tr>
<tr>
<td>Path Planning Algorithms</td>
<td>경로 계획 알고리즘</td>
</tr>
<tr>
<td>Obstacle Detection</td>
<td>장애물 탐지</td>
</tr>
<tr>
<td>Road Condition Analysis</td>
<td>도로 상태 분석</td>
</tr>
<tr>
<td>Sensor Data Integration</td>
<td>센서 데이터 통합</td>
</tr>
<tr>
<td>Automated Steering Control</td>
<td>자동 조향 제어</td>
</tr>
<tr>
<td>Energy Efficient Driving</td>
<td>에너지 효율적 운전</td>
</tr>
<tr>
<td>Vehicle-to-Vehicle Communication</td>
<td>차량 간 통신</td>
</tr>
<tr>
<td>Real-Time Navigation</td>
<td>실시간 내비게이션</td>
</tr>
<tr>
<td>Machine Learning in Autonomous Systems</td>
<td>자율 시스템에서의 기계 학습</td>
</tr>
<tr>
<td>Driver Behavior Analysis</td>
<td>운전자 행동 분석</td>
</tr>
<tr>
<td>Traffic Flow Optimization</td>
<td>교통 흐름 최적화</td>
</tr>
<tr>
<td>Smart Transportation Systems</td>
<td>스마트 교통 시스템</td>
</tr>
<tr>
<td>Autonomous Emergency Braking</td>
<td>자율 긴급 제동</td>
</tr>
<tr>
<td>Vehicle Positioning Systems</td>
<td>차량 위치 결정 시스템</td>
</tr>
<tr>
<td>Electric Autonomous Vehicles</td>
<td>전기 자율주행 차량</td>
</tr>
<tr>
<td>Road Safety Enhancements</td>
<td>도로 안전 향상</td>
</tr>
<tr>
<td>Self-Driving Vehicle Regulations</td>
<td>자율주행 차량 규제</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>영문</th>
<th>국문</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Driving Systems</td>
<td>자율주행 시스템</td>
</tr>
<tr>
<td>Vehicle Lane Detection</td>
<td>차량 차선 감지</td>
</tr>
<tr>
<td>Speed Control Technologies</td>
<td>속도 제어 기술</td>
</tr>
<tr>
<td>Path Planning Algorithms</td>
<td>경로 계획 알고리즘</td>
</tr>
<tr>
<td>Obstacle Detection</td>
<td>장애물 탐지</td>
</tr>
<tr>
<td>Road Condition Analysis</td>
<td>도로 상태 분석</td>
</tr>
<tr>
<td>Sensor Data Integration</td>
<td>센서 데이터 통합</td>
</tr>
<tr>
<td>Automated Steering Control</td>
<td>자동 조향 제어</td>
</tr>
<tr>
<td>Energy Efficient Driving</td>
<td>에너지 효율적 운전</td>
</tr>
<tr>
<td>Vehicle-to-Vehicle Communication</td>
<td>차량 간 통신</td>
</tr>
<tr>
<td>Real-Time Navigation</td>
<td>실시간 내비게이션</td>
</tr>
<tr>
<td>Machine Learning in Autonomous Systems</td>
<td>자율 시스템에서의 기계 학습</td>
</tr>
<tr>
<td>Driver Behavior Analysis</td>
<td>운전자 행동 분석</td>
</tr>
<tr>
<td>Traffic Flow Optimization</td>
<td>교통 흐름 최적화</td>
</tr>
<tr>
<td>Smart Transportation Systems</td>
<td>스마트 교통 시스템</td>
</tr>
<tr>
<td>Autonomous Emergency Braking</td>
<td>자율 긴급 제동</td>
</tr>
<tr>
<td>Vehicle Positioning Systems</td>
<td>차량 위치 결정 시스템</td>
</tr>
<tr>
<td>Electric Autonomous Vehicles</td>
<td>전기 자율주행 차량</td>
</tr>
<tr>
<td>Road Safety Enhancements</td>
<td>도로 안전 향상</td>
</tr>
<tr>
<td>Self-Driving Vehicle Regulations</td>
<td>자율주행 차량 규제</td>
</tr>
<tr>
<td>3D Mapping for Autonomous Navigation</td>
<td>자율주행을 위한 3D 매핑</td>
</tr>
<tr>
<td>Cybersecurity in Autonomous Vehicles</td>
<td>자율주행 차량의 사이버보안</td>
</tr>
<tr>
<td>Edge Computing in Driving Systems</td>
<td>운전 시스템에서의 엣지 컴퓨팅</td>
</tr>
<tr>
<td>Environmental Impact of Self-Driving Cars</td>
<td>자율주행 차량의 환경 영향</td>
</tr>
<tr>
<td>Human Override Systems in Autonomous Vehicles</td>
<td>자율주행 차량의 인간 개입 시스템</td>
</tr>
<tr>
<td>LiDAR Technology in Vehicle Detection</td>
<td>차량 감지에서의 LiDAR 기술</td>
</tr>
<tr>
<td>Machine Vision for Road Safety</td>
<td>도로 안전을 위한 기계 시각</td>
</tr>
<tr>
<td>Natural Language Processing for Vehicle Control</td>
<td>차량 제어를 위한 자연어 처리</td>
</tr>
<tr>
<td>Regenerative Braking Systems</td>
<td>재생 제동 시스템</td>
</tr>
<tr>
<td>Smart Grid Integration for Electric Vehicles</td>
<td>전기차를 위한 스마트 그리드 통합</td>
</tr>
<tr>
<td>Urban Planning for Autonomous Transit</td>
<td>자율 이동을 위한 도시 계획</td>
</tr>
<tr>
<td>Vehicle Infrastructure Integration</td>
<td>차량 인프라 통합</td>
</tr>
<tr>
<td>Autonomous Cargo Transportation</td>
<td>자율 화물 운송</td>
</tr>
<tr>
<td>Blockchain in Vehicle Transactions</td>
<td>차량 거래에서의 블록체인</td>
</tr>
<tr>
<td>Cloud Computing in Vehicle Systems</td>
<td>차량 시스템에서의 클라우드 컴퓨팅</td>
</tr>
<tr>
<td>Digital Twins in Automotive Industry</td>
<td>자동차 산업에서의 디지털 트윈</td>
</tr>
<tr>
<td>Electric Vehicle Battery Innovations</td>
<td>전기차 배터리 혁신</td>
</tr>
<tr>
<td>Fleet Management for Autonomous Vehicles</td>
<td>자율주행 차량의 차대 관리</td>
</tr>
<tr>
<td>Geospatial Data Analysis for Navigation</td>
<td>내비게이션을 위한 지리 공간 데이터 분석</td>
</tr>
<tr>
<td>Haptic Feedback in Vehicle Interfaces</td>
<td>차량 인터페이스의 후각 피드백</td>
</tr>
</tbody>
</table>
블립 5 LLM 기반 전략기술 후보 과제 도출

논문·특허 데이터 기반 TF-IDF 분석 & LLM 분석을 통한 전략기술 후보 과제 도출

- TF-IDF(Term Frequency-Inverse Document Frequency) : 특정 단어가 문서 집합에서 얼마나 중요한지를 평가하는 데 사용되는 통계적 수치 분석 기법
- 특정 단어가 문서 집합에서 얼마나 중요한지를 평가하는 데 사용되는 통계적 수치
- TF-IDF 분석 결과를 기반으로 LLM 기반 주요 키워드를 도출 (GPT 4.0) → 주요 키워드를 통해 키워드를 확장하여 전략기술에 부합하는 정부과제명 도출 (GPT 4.0)

<table>
<thead>
<tr>
<th>번호</th>
<th>전략 과제명 (영문/국문)</th>
<th>설명</th>
<th>주요 키워드</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Autonomous Driving Control System (고금 자율주행 제어 시스템)</td>
<td>복잡한 도로 상황에서도 높은 정확도로 차량을 제어할 수 있는 고급 시스템 개발, 이는 다양한 센서와 알고리즘을 통합하여 더 나은 의사결정과 안전 운행을 보장함.</td>
<td>autonomous, control, sensor</td>
</tr>
<tr>
<td>2</td>
<td>Intelligent Traffic Management System Integration (지능형 교통 관리 시스템 통합)</td>
<td>자율주행 차량과 기존 교통 시스템 간의 효율적인 통합을 목표로 하는 프로젝트. 이는 교통 환경을 최적화하고 혼잡을 감소시키는 데 기여함.</td>
<td>autonomous, traffic, network</td>
</tr>
<tr>
<td>3</td>
<td>Real-Time Data Processing and Response Technology (실시간 데이터 처리 및 응답 기술)</td>
<td>자율주행 차량이 주변 환경에서 발생하는 변화에 신속하게 반응할 수 있도록 하는 데이터 처리 기술 개발. 여기에는 고속 데이터 분석 및 적시 응답 메커니즘이 포함됨.</td>
<td>data, processing, response</td>
</tr>
<tr>
<td>4</td>
<td>Autonomous Driving Safety Simulation (자율주행 안전성 향상 시뮬레이션)</td>
<td>다양한 가상 환경에서 자율주행 차량의 성능과 안전성을 평가하는 시뮬레이션 기술 개발. 이는 사고 방지와 위험 상황 대응 능력을 향상시키는 데 중점을 둔.</td>
<td>autonomous, safety, simulation</td>
</tr>
<tr>
<td>5</td>
<td>Efficient Route Planning and Navigation System (효율적 경로 계획 및 네비게이션 시스템)</td>
<td>실시간 교통 정보와 환경 분석을 기반으로 최적의 경로를 제공하는 지능형 네비게이션 시스템 개발. 이는 운전 효율성을 증가시키고 여행 시간을 단축하는 데 기여함.</td>
<td>route, planning, navigation</td>
</tr>
<tr>
<td>6</td>
<td>Advanced Networking for Vehicle Communication (차량 간 통신을 위한 고급 네트워킹)</td>
<td>자율주행 차량 간 그리고 인프라와의 신속하고 안정적인 통신을 가능하게 하는 고급 네트워킹 기술 개발. 이는 차량의 상호 운영성과 안전성을 향상시키는 데 중점을 둔.</td>
<td>communicatio, vehicle, networking</td>
</tr>
<tr>
<td>7</td>
<td>Enhanced Object Recognition and Avoidance Technology (개체 인식 및 회피 기술 개선)</td>
<td>차량이 주변의 장애물을 정확하게 인식하고 효과적으로 피할 수 있는 정면 센서 및 알고리즘 개발. 이는 도로 안전성을 높이고 충돌 위험을 감소시키는 데 기여함.</td>
<td>object, recognition, sensor</td>
</tr>
<tr>
<td>8</td>
<td>User Interface Improvement for Enhanced User Experience (사용자 경험 개선을 위한 인터페이스 개발)</td>
<td>사용자가 자율주행 차량을 보다 쉽고 직관적으로 조작하고 상호작용할 수 있도록 하는 인터페이스 개선 프로젝트. 이는 차량 사용의 편리성과 접근성을 증가시키는 데 중점을 둔.</td>
<td>user, interface, experience</td>
</tr>
<tr>
<td>9</td>
<td>Energy Efficiency Optimization (에너지 효율성 최적화)</td>
<td>자율주행 차량의 에너지 소비를 최소화하고 전체 효율성을 극대화하는 기술 개발. 이는 자동차에 유연하고 안전 환경 조성과 운영 비용 절감에 기여함.</td>
<td>energy, efficiency, optimization</td>
</tr>
<tr>
<td>10</td>
<td>Emergency Response Protocol Development (비상 상황 대응 프로토콜 개발)</td>
<td>비상 상황 발생 시 자율주행 차량이 신속하고 효과적으로 대응할 수 있는 프로토콜 및 시스템 개발. 이는 차량의 안전성을 높이고 위험 상황에서의 대응 능력을 강화함.</td>
<td>emergency, response, protocol</td>
</tr>
</tbody>
</table>
논문·특허 데이터 기반 LDA 분석 & LLM 분석을 통한 전략기술 후보 과제 도출

- LDA (Latent Dirichlet Allocation) : 자연어 처리 분야에서 토큰이라는 문서 집합 텍스트의 숨겨진 의미 구조를 발견하기 위해 사용되는 텍스트 마이닝 기법
- 토큰 모델링의 일종으로 문서 집합에서 잠재적인 주제를 찾아내는 기법
- LDA 분석 결과를 기반으로 LLM 기반 주요 키워드를 도출 (GPT 4.0) → 주요 키워드를 통해 키워드를 확장하여 전략기술에 부합하는 정부과제명 도출 (GPT 4.0)

<table>
<thead>
<tr>
<th>그룹</th>
<th>전략 과제명 (영문/국문)</th>
<th>설명</th>
<th>주요 키워드</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words_0</td>
<td>Vehicle Integration Strategies (차량 통합 전략)</td>
<td>자율주행 기술과 기존 차량 시스템의 통합 방안 개발</td>
<td>vehicle, lane, speed</td>
</tr>
<tr>
<td>Words_1</td>
<td>Steering System Innovation (조향 시스템 혁신)</td>
<td>자율주행을 위한 혁신적인 조향 시스템 설계 및 개발</td>
<td>steering, motor, layer</td>
</tr>
<tr>
<td>Words_2</td>
<td>Connected Device Optimization (연결 장치 최적화)</td>
<td>자율주행 시스템에서 다양한 장치의 연결성 및 효율성 향상</td>
<td>connected, device, end</td>
</tr>
<tr>
<td>Words_3</td>
<td>Image Processing Enhancement (이미지 처리 기술 강화)</td>
<td>자율주행 차량의 이미지 인식 및 처리 능력 개선</td>
<td>image, object, map</td>
</tr>
<tr>
<td>Words_4</td>
<td>Data-Driven Decision Making (데이터 기반 의사결정)</td>
<td>대량의 데이터를 기반으로 한 자율주행 차량의 의사결정 시스템 개발</td>
<td>data, driving, model</td>
</tr>
<tr>
<td>Words_5</td>
<td>Network-Based Vehicle Control (넷워크 기반 차량 제어)</td>
<td>자율주행 차량의 네트워크 연결 및 제어 시스템 발전</td>
<td>network, parking, parameter</td>
</tr>
<tr>
<td>Words_6</td>
<td>Advanced Sensing Technologies (고급 센싱 기술)</td>
<td>자율주행 차량을 위한 고급 센싱 기술 및 장치 개발</td>
<td>sensor, learning, space</td>
</tr>
<tr>
<td>Words_7</td>
<td>Autonomous Vehicle Safety Systems (자율주행 차량 안전 시스템)</td>
<td>자율주행 차량의 안전을 위한 첨단 시스템 및 기술 개발</td>
<td>autonomous, control, unit</td>
</tr>
<tr>
<td>Words_8</td>
<td>Information Management Solutions (정보 관리 솔루션)</td>
<td>자율주행 차량의 정보 수집 및 관리 솔루션 개발</td>
<td>information, data, sensor</td>
</tr>
<tr>
<td>Words_9</td>
<td>Driving Behavior Analysis (운전 행태 분석)</td>
<td>자율주행 시스템을 위한 운전자 행태 및 반응 분석 기술 개발</td>
<td>driving, vehicle, system</td>
</tr>
</tbody>
</table>
제1장 조사 개요

제1절 조사의 배경 및 필요성

1. 조사의 배경

 kernals
text

2. 조사의 필요성

 kernals
text

2024 기술수준평가 정성평가 개선 연구 결과(안)
제2절 조사 개요

1. 조사 개요

조사 대상 : 2022년 기술수준평가 멜파이 조사에 참여한 전문가 1,190명
조사 기간 : 2023년 12월 1일~15일 (약 2주)
조사 참여 : 502명
조사 방법 : 구조화된 설문지를 활용한 Web 조사, 문자 및 E-mail발송과 전화를 통한 설문참여 독려

2. 조사 내용

주요 조사 내용은 다음 표와 같음
제3절 조사 절차

■ 2022년 기술수준평가 델피이 조사에 참여한 전문가 1,190명을 대상으로 문자 및 이메일 발송 후 독려전화를 실시

■ 회수율 제고를 위해 조사에 참여한 모든 응답자에게 1만원 상당의 담배품을 제공

<table>
<thead>
<tr>
<th>분류</th>
<th>조사 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차 델피이 조사에 관한 평가</td>
<td>- 기술수준 및 격차 평가의 고려항목(10개 분류, 40개 항목 평가)
 - 자료의 활용도(3개 분류, 6개 항목)
 - 신뢰성을 높이기 위해 추가적으로 제공되어야할 자료
 - 기술수준 평가를 위해 추가해야할 국가</td>
</tr>
<tr>
<td>평가전문가단 선정 기준</td>
<td>- 평가전문단 선정서 고려해야할 선정기준
 - 1순위로 선정한 이유</td>
</tr>
<tr>
<td>결과에 대한 활용도</td>
<td>- 기술수준 평가로서 가장 활용도가 가장 높은 평가항목
 - 기술수준 평가로서 가장 활용도가 가장 낮은 평가항목
 - 활용도를 높이기 위해 추가적으로 필요한 항목</td>
</tr>
<tr>
<td>전반적인 평가</td>
<td>- 기술수준평가 참여 경험이 연구 및 업무에 도움이 되는 정도
 - 도움이 된 이유/내용/사례
 - '24년 기술수준평가 델피이 조사에 참여할 의향
 - 참여하기 어려운 이유
 - 기술수준평가 진행시 해로사항 및 요구사항
 - 기술수준평가 진행시 필요한 개선사항
 - 개선방안 도출에 도움을 줄 의향</td>
</tr>
<tr>
<td>응답자 특성</td>
<td>- 성별, 소속, 연령, 연구 경력</td>
</tr>
</tbody>
</table>

<< 조사 절차 >>
제4절 응답자 특성

주요 응답자 특성은 다음 표와 같음

<table>
<thead>
<tr>
<th>(응답자 특성)</th>
<th>사례수</th>
<th>비율</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>100.0</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>93.0</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>7.0</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>17.9</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>32.9</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>43.2</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>6.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>3.6</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>31.9</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>50.2</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>14.3</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>2.4</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>7.6</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>14.9</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>75.1</td>
</tr>
</tbody>
</table>
제2장 조사 결과

제1절 1차 델파이 조사에 관한 평가

1. 기술수준 및 격차 평가시 고려항목

■ 기술수준 및 격차를 평가할 때 고려했던 항목에 대해 질문하였고, 총 40개 항목 중 가장 많이 고려한 상위 5개 항목과 상대적으로 고려하지 않았던 항목 5개는 아래와 같음

- 상위 5개 고려항목
 : 각 국가별로 해당 기술 분야의 R&D 활동이 지속적이고 진보적인지
 : 각 국가별로 해당 기술 분야에서 혁신이 산업 전반에 영향을 미치는지
 : 각 국가별로 해당 기술 분야에서 혁신이 빠른 속도로 이루어지는지
 : 각 국가별로 해당 기술이 지속적으로 진화하고 새로운 기능이 추가되는지
 : 각 국가별로 해당 기술 분야에 대한 정부의 정책 및 재정적 지원이 충분한지

- 하위 5개 고려항목
 : 각 국가별로 해당 기술 분야에서의 국제적인 파트너십이 기술 발전에 기여하는지
 : 각 국가별로 해당 기술 분야의 연구 개발이 혁신의 침체적인 방향으로 진행되는지
 : 각 국가별로 해당 기술 분야가 사용량이 증가하는 주요 기여는 있는지
 : 각 국가별로 해당 기술 분야가 사회 및 경제적 측면을 다하는지
 : 각 국가별로 해당 기술 분야의 R&D 활동이 국제적인 협력을 통해 강화하는지

(기술수준 및 격차 평가시 고려항목)
(Base: 전체 응답자, n=502, 단위: 7점척도, 평균)
(상위 5개와 하위 5개만 제시)

<table>
<thead>
<tr>
<th>항목</th>
<th>상위 5개 자료</th>
<th>하위 5개 자료</th>
</tr>
</thead>
<tbody>
<tr>
<td>각 국가별로 해당 기술 분야의 R&D 활동이 지속적이고 진보적인지</td>
<td>5.67</td>
<td>4.82</td>
</tr>
<tr>
<td>각 국가별로 해당 기술 분야에서 혁신이 산업 전반에 영향을 미치는지</td>
<td>5.57</td>
<td>4.82</td>
</tr>
<tr>
<td>각 국가별로 해당 기술 분야에서 혁신이 빠른 속도로 이루어지는지</td>
<td>5.54</td>
<td>4.72</td>
</tr>
<tr>
<td>각 국가별로 해당 기술이 지속적으로 진화하고 새로운 기능이 추가되는지</td>
<td>5.53</td>
<td>4.69</td>
</tr>
<tr>
<td>각 국가별로 해당 기술 분야에 대한 정부의 정책 및 재정적 지원이 충분한지</td>
<td>5.53</td>
<td>4.58</td>
</tr>
</tbody>
</table>

전문가의 관점에서, 기술수준 및 격차 평가시 고려항목은 다음과 같은 항목들로 구성할 수 있다:
- 각 국가별로 해당 기술 분야의 R&D 활동이 지속적이고 진보적인지
- 각 국가별로 해당 기술 분야에서 혁신이 산업 전반에 영향을 미치는지
- 각 국가별로 해당 기술 분야에서 혁신이 빠른 속도로 이루어지는지
- 각 국가별로 해당 기술이 지속적으로 진화하고 새로운 기능이 추가되는지
- 각 국가별로 해당 기술 분야에 대한 정부의 정책 및 재정적 지원이 충분한지

한편, 각 국가별로 해당 기술 분야의 R&D 활동이 지속적이고 진보적인지와, 각 국가별로 해당 기술이 지속적으로 진화하고 새로운 기능이 추가되는지에 대한 평가는 5.53점으로 높은 평가를 받았다.
< 기술수준 및 역차 평가 시 고려항목 >

<table>
<thead>
<tr>
<th>분류</th>
<th>고려항목</th>
<th>사례수</th>
<th>전혀 고려하지 않음</th>
<th>전혀 고려하지 않음</th>
<th>중간</th>
<th>중간</th>
<th>해당 사항만 고려하여 평가</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) 각 국가별로 해당 기술 분야의 R&D 활동이 지속적이고 진보적인지</td>
<td>(2) 각 국가별로 해당 기술 분야의 연구 개발 프로젝트가 효과적인 결과를 낳는지</td>
<td>(3) 각 국가별로 해당 기술 분야의 R&D 활동이 국제적인 협력을 통해 강화되는지</td>
<td>(4) 각 국가별로 해당 기술 분야에서 혁신이 산업 전반에 영향을 미치는지</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) 연구 및 개발 (R&D) 능력</td>
<td>502</td>
<td>0.0</td>
<td>0.6</td>
<td>1.4</td>
<td>7.6</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 기술혁신 및 발전 속도</td>
<td>502</td>
<td>0.0</td>
<td>0.2</td>
<td>1.2</td>
<td>13.3</td>
<td>28.1</td>
</tr>
<tr>
<td>(3)</td>
<td>산업 내 기술의 적용 및 통합 정도</td>
<td>502</td>
<td>2.2</td>
<td>4.8</td>
<td>10.2</td>
<td>29.9</td>
<td>27.1</td>
<td>20.7</td>
</tr>
</tbody>
</table>
 sol | | | 502 | 0.0 | 0.6 | 1.8 | 10.8 | 24.9 | 51.0 | 11.0 | 5.57 |
| | | | 502 | 0.0 | 0.6 | 1.4 | 11.4 | 26.1 | 50.0 | 10.4 | 5.54 |
| | | | 502 | 0.2 | 0.6 | 1.4 | 11.4 | 26.1 | 50.0 | 10.4 | 5.54 |
| | | | 502 | 0.4 | 2.2 | 5.4 | 21.7 | 28.7 | 33.1 | 8.6 | 5.10 |
| | | | 502 | 0.0 | 0.8 | 1.0 | 8.6 | 32.7 | 48.0 | 9.0 | 5.53 |
| | | | 502 | 0.0 | 0.8 | 1.0 | 8.6 | 32.7 | 48.0 | 9.0 | 5.53 |
| | | | 502 | 0.4 | 0.4 | 3.4 | 13.7 | 33.9 | 39.4 | 8.8 | 5.34 |
| | | | 502 | 0.0 | 0.8 | 1.4 | 17.3 | 29.3 | 39.8 | 9.0 | 5.30 |
| | | | 502 | 0.4 | 0.8 | 3.4 | 17.3 | 29.3 | 39.8 | 9.0 | 5.30 |
| | | | 502 | 0.6 | 1.0 | 5.4 | 22.7 | 37.6 | 27.1 | 5.6 | 4.99 |
| | | | 502 | 0.6 | 1.2 | 5.6 | 17.1 | 34.5 | 33.9 | 7.2 | 5.14 |
| | | | 502 | 1.0 | 1.8 | 3.6 | 16.1 | 33.9 | 35.9 | 7.8 | 5.19 |

(단위: %, 7점척도, 평균)
<table>
<thead>
<tr>
<th>분류</th>
<th>고려항목</th>
<th>사례수</th>
<th>전혀 고려하지 않음</th>
<th>중간</th>
<th>해당사항만 고려하여 평가</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>①</td>
<td>③</td>
<td>⑤</td>
<td>⑦</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>②</td>
<td>④</td>
<td>⑥</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>기술 관련 교육 및 훈련 수준</td>
<td>(1) 각 국가별로 해당 국가의 각 국가별로 해당 기술 분야의 전문 인력이 고금질의 교육과 훈련을 받는지</td>
<td>502</td>
<td>0.4</td>
<td>1.2</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야에 대한 교육 및 훈련 프로그램이 지속적으로 발전하는지</td>
<td></td>
<td>502</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야의 인력이 업계의 최신 동향에 능숙하게 대응할 수 있는 역량을 가지는지</td>
<td></td>
<td>502</td>
<td>0.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야의 교육 및 훈련이 산업의 필요에 잘 부합하는지</td>
<td></td>
<td>502</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>(5)</td>
<td>기술 인프라 및 장비의 현대성</td>
<td>(1) 각 국가별로 해당 기술 분야의 인프라와 장비가 최신 상태인지</td>
<td>502</td>
<td>0.4</td>
<td>0.8</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야의 최신 기술 장비와 시설을 활용하여 연구 및 개발을 지원하는지</td>
<td></td>
<td>502</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야의 연구 시설이 세계적인 수준인지</td>
<td></td>
<td>502</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야의 장비가 지속적으로 현대화되는지</td>
<td></td>
<td>502</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>(6)</td>
<td>지적 재산권 및 특허 활동</td>
<td>(1) 각 국가별로 해당 기술 분야에서 활발한 지적 재산권 및 특허 활동이 이루어지는지</td>
<td>502</td>
<td>0.6</td>
<td>0.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야에서의 특허 품질과 혁신성이 높은지</td>
<td></td>
<td>502</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야의 지적 재산권이 국제적으로 인정받고 보호되는지</td>
<td></td>
<td>502</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야의 특허 활동이 기술 발전과 상업적 성공에 기여하는지</td>
<td></td>
<td>502</td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>분류</td>
<td>고려항목</td>
<td>사례수</td>
<td>전혀 고려하지 않음</td>
<td>중간</td>
<td>해당 사항만 고려하여 평가</td>
<td>평균</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>정부 정책 및 지원</td>
<td>(1) 각 국가별로 해당 기술 분야에 대한 정부의 정책 및 재정적 지원이 충분한지</td>
<td>502</td>
<td>0.4</td>
<td>0.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야에 대한 정부의 연구 개발 지원이 산업 발전에 기여하는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야에 대한 정부의 규제가 혁신과 경쟁력 향상에 적절한지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야에 대한 정부의 지원이 국제 협력과 네트워킹을 촉진하는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>국제 협력 및 네트워킹</td>
<td>(1) 각 국가별로 해당 기술 분야에서의 국제 협력과 네트워킹이 활발한지</td>
<td>502</td>
<td>1.4</td>
<td>2.8</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야에서의 국제적인 파트너십이 기술 발전에 기여하는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야의 글로벌 경쟁력을 증진시키는 국제 협력이 중요한지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야에서의 국제적인 정보 교류와 협력이 중요한지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>시장 수용도 및 상용화 정도</td>
<td>(1) 각 국가별로 해당 기술이 시장에서 잘 수용되고 상용화되는지</td>
<td>502</td>
<td>0.4</td>
<td>0.8</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 각 국가별로 해당 기술 분야의 상품 및 서비스가 시장에서 경쟁력을 가지는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 각 국가별로 해당 기술 분야의 혁신이 소비자에게 잘 전달되고 수용되는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 각 국가별로 해당 기술 분야의 상품이나 서비스가 국제 시장에서 성공을 거두는지</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

253
2. 자료의 활용도

1차 멜파이 조사 시에 제공되었던 자료의 활용도를 질문한 결과, ‘국가별 논문 동향’이 평균 5.57점, ‘국가별 특허 동향’이 5.45점으로 논문 및 특허분석의 자료가 가장 활용도가 높았던 것으로 조사되었음

반면, ‘경험이나 직관’과 ‘기타 언론 혹은 보유자료’에 대한 자료 활용도는 상대적으로 적었던 것으로 조사되었음

(자료의 활용도)

질문: 1차 멜파이 조사 시에 제공되었던 각 자료의 활용도는 어느 정도였습니까?
<자료의 활용도>

(단위: %, 7점척도, 평균)

<table>
<thead>
<tr>
<th>제공 자료</th>
<th>사례 수</th>
<th>전혀 활용하지 않음</th>
<th>중간</th>
<th>해당 자료 만을 활용</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 논문·특허 분석 자료</td>
<td>(1) 국가별 논문 동향 502</td>
<td>0.6</td>
<td>0.4</td>
<td>11.4</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>(2) 국가별 특허 동향 502</td>
<td>0.6</td>
<td>0.6</td>
<td>1.8</td>
<td>11.0</td>
</tr>
<tr>
<td>(2) 이전 보고서</td>
<td>(3) 논문·특허 상위기관 현황 502</td>
<td>0.4</td>
<td>0.4</td>
<td>2.6</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>(4) 20년 기술수준평가 결과 502</td>
<td>0.4</td>
<td>0.6</td>
<td>3.0</td>
<td>17.5</td>
</tr>
<tr>
<td>(3) 그 외</td>
<td>(5) 경험이나 직관 502</td>
<td>0.0</td>
<td>1.4</td>
<td>3.0</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>(6) 기타 언론 혹은 보유 자료 502</td>
<td>5.0</td>
<td>2.5</td>
<td>0.6</td>
<td>21.9</td>
</tr>
</tbody>
</table>

3. 신뢰성 높이기 위해 추가적으로 제공되어야 할 자료

- 신뢰성을 높이기 위해 추가적으로 제공되어야 할 자료에 대해 질문한 결과, 응답자의 74.5%가 ‘연구 및 개발(R&D) 투자 데이터’가 필요하다고 응답하여 가장 필요한 자료로 조사되었음

- 또한 ‘시장 분석 보고서’와 ‘산업 동향 보고서’ 그리고 ‘정부정책 및 지원’ 자료에 대한 수요도 높은 것으로 조사되었음

〈신뢰성을 높이기 위해 추가적으로 제공되어야할 자료〉

(Base: 전체 응답자, n=502, 단위: %, 복수응답)

질문 1차 설문이 조사 사례 중 어떤 자료들이 추가적으로 제공되어야 조사 결과의 신뢰성이 더 높이질까고 생각하시나? 해당하는 것을 모두 선택해 주십시오.
< 선회성을 높이기 위해 추가적으로 제공되어야할 자료 (1/2) >

(단위: %, 복수응답)

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>연구 및 개발(R&D) 투자대이</th>
<th>시장 분석 보고서</th>
<th>산업 동향 보고서</th>
<th>정부 정책 및 지원</th>
<th>기술 개요 및 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>74.5</td>
<td>67.5</td>
<td>63.3</td>
<td>61.6</td>
<td>50.4</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>73.9</td>
<td>67.2</td>
<td>63.6</td>
<td>61.5</td>
<td>50.1</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>82.9</td>
<td>71.4</td>
<td>60.0</td>
<td>62.9</td>
<td>54.3</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>65.6</td>
<td>70.0</td>
<td>73.3</td>
<td>57.8</td>
<td>45.6</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>78.8</td>
<td>64.8</td>
<td>58.8</td>
<td>58.2</td>
<td>58.2</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>75.1</td>
<td>65.4</td>
<td>60.4</td>
<td>64.5</td>
<td>46.5</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>73.3</td>
<td>90.0</td>
<td>80.0</td>
<td>70.0</td>
<td>50.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>72.2</td>
<td>66.7</td>
<td>50.0</td>
<td>72.2</td>
<td>77.8</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>79.4</td>
<td>68.1</td>
<td>59.4</td>
<td>54.4</td>
<td>51.3</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>75.8</td>
<td>67.1</td>
<td>67.1</td>
<td>65.1</td>
<td>48.4</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>59.7</td>
<td>68.1</td>
<td>62.5</td>
<td>62.5</td>
<td>48.6</td>
</tr>
<tr>
<td>연구 영역</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>75.0</td>
<td>58.3</td>
<td>50.0</td>
<td>83.3</td>
<td>66.7</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>65.8</td>
<td>68.4</td>
<td>57.9</td>
<td>60.5</td>
<td>47.4</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>84.0</td>
<td>65.3</td>
<td>61.3</td>
<td>61.3</td>
<td>52.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>73.5</td>
<td>68.2</td>
<td>64.7</td>
<td>61.0</td>
<td>49.9</td>
</tr>
</tbody>
</table>

< 선회성을 높이기 위해 추가적으로 제공되어야할 자료 (2/2) >

(단위: %, 복수응답)

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>기술적 문제 및 도전 과제</th>
<th>전문가 의견 및 인터뷰</th>
<th>국제 협력 및 파트너십</th>
<th>기타</th>
<th>추가적 제공 자료는 필요 없음</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>49.8</td>
<td>35.7</td>
<td>27.7</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>49.3</td>
<td>36.4</td>
<td>28.1</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>57.1</td>
<td>25.7</td>
<td>22.9</td>
<td>2.9</td>
<td>0.0</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>61.1</td>
<td>43.3</td>
<td>37.8</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>46.1</td>
<td>29.7</td>
<td>24.8</td>
<td>1.8</td>
<td>0.6</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>48.4</td>
<td>36.4</td>
<td>25.8</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>46.7</td>
<td>40.0</td>
<td>26.7</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>44.4</td>
<td>35.0</td>
<td>23.8</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>52.4</td>
<td>38.5</td>
<td>29.4</td>
<td>3.2</td>
<td>0.8</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>58.3</td>
<td>29.2</td>
<td>30.6</td>
<td>1.4</td>
<td>4.2</td>
</tr>
<tr>
<td>연구 영역</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>33.3</td>
<td>33.3</td>
<td>8.3</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>42.1</td>
<td>34.2</td>
<td>26.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>50.7</td>
<td>40.0</td>
<td>29.3</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>50.9</td>
<td>35.0</td>
<td>28.1</td>
<td>2.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>
4. 기술수준 평가를 위해 추가해야할 국가

기술수준평가 분야에서 추가되어야할 국가가 있는지 의견을 물어본 결과, 응답자가 78.5%가 추가할 국가가 있다고 응답하였음

〈 기술수준 평가를 위해 추가해야할 국가 〉

(Base: 전체 응답자, n=502, 단위: %)

질문: 귀하께서 수행하신 기술수준평가 분야에서 추가되어야할 국가가 있다면 한 가지 국가만 말씀해 주십시오. 현재 기술수준평가에서 평가하고 있는 국가는 5개국이며 미국, 중국, 일본, 유럽, 우리나라입니다. 이 5개국 이외에 해당 기술을 평가함에 있어 더 추가되어야할 국가가 있으시면 자유롭게 말씀해 주십시오.

〈 기술수준 평가를 위해 추가해야할 국가 유무 〉

(단위: %)

<table>
<thead>
<tr>
<th>성별</th>
<th>사례수</th>
<th>추가해야할 국가가 없음</th>
<th>추가해야할 국가가 있음</th>
</tr>
</thead>
<tbody>
<tr>
<td>남성</td>
<td>467</td>
<td>77.7</td>
<td>22.3</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>88.6</td>
<td>11.4</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>67.8</td>
<td>32.2</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>83.6</td>
<td>16.4</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>80.6</td>
<td>19.4</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>66.7</td>
<td>33.3</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>83.3</td>
<td>16.7</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>80.0</td>
<td>20.0</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>78.2</td>
<td>21.8</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>75.0</td>
<td>25.0</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>75.0</td>
<td>25.0</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>73.7</td>
<td>26.3</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>82.7</td>
<td>17.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>78.2</td>
<td>21.8</td>
</tr>
</tbody>
</table>

257
추가해야할 국가에 대해 주관적으로 질문하였고 그 결과를 응답자 전문분야(11개 분야)별로 구분하여 정리하였음

EU를 세분화하여 제시한 경우가 많았고 BRICs 국가(브라질, 러시아, 인도, 중국, 스페인)를 언급한 사례도 많았음

[주관식 응답] 기술수준 평가를 위해 추가해야할 국가

<table>
<thead>
<tr>
<th>대분류</th>
<th>국가명 (가나다 순)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 건설·교통</td>
<td>독일, 브라질, 스페인, 싱가포르, 이탈리아, 인도, 영국, 캐나다, 프랑스, 호주</td>
</tr>
<tr>
<td>2. 재난안전</td>
<td>인도, 중동(특정 국가보다는 해당지역), 캐나다</td>
</tr>
<tr>
<td>3. 우주·항공·해양</td>
<td>독일, 러시아, 이스라엘, 우크라이나, 인도, 영국, 중국, 프랑스</td>
</tr>
<tr>
<td>4. 국방</td>
<td>러시아, 이스라엘, 인도, 호주</td>
</tr>
<tr>
<td>5. 기계·제조</td>
<td>대만, 말레이시아, 싱가포르, 이스라엘, 오스트레일리아, 인도</td>
</tr>
<tr>
<td>6. 소재·나노</td>
<td>캐나다, 호주</td>
</tr>
<tr>
<td>7. 농림수산·식품</td>
<td>네덜란드, 베트남, 싱가포르, 이스라엘, 인도, 중국, 호주, 캐나다, EU</td>
</tr>
<tr>
<td>8. 생명·보건의료</td>
<td>대만, 독일, 이스라엘, 인도, 영국, 캐나다, EU</td>
</tr>
<tr>
<td>9. 에너지·자원</td>
<td>노르웨이, 대만, 동남아시아(특정 국가보다는 해당지역), 러시아, 브라질, 인도, 영국, 캐나다, 터키, 호주, EU(구체적인 국가로 세분화)</td>
</tr>
<tr>
<td>10. 환경·기상</td>
<td>네덜란드, 독일, 덴마크, 북유럽(특정 국가보다는 해당 지역), 싱가포르 등(중국 문화권 국가). 인도, 영국, 캐나다, 호주</td>
</tr>
<tr>
<td>11. ICT·SW</td>
<td>뉴질랜드, 대만, 독일, 동남아시아(구체적인 국가로 세분화), 이스라엘, 유럽(구체적인 국가로 세분화), 인도, 영국, 캐나다, 호주</td>
</tr>
</tbody>
</table>
제2절 평가전문가단 선정 기준

1. 평가전문단 선정시 고려해야할 선정기준

평가전문단 선정시 고려해야할 선정기준에 대해 질문한 결과, ‘전문분야와 기술분야 연관성’이 49.4%(1순위 기준)로 과반수를 차지하였으며 그 다음으로 ‘해당 기술분야 연구기간’과 ‘최종학위와 기술분야 연관성’에 대한 응답이 많았음

1+2+3순위를 기준으로 살펴보면, ‘최근 연구분야’에 대한 응답이 36.7%로 상대적으로 많았음

< 평가전문단 선정시 고려해야할 선정기준 >

(Base: 전체 응답자 n=502, 단위 %, 1순위, 1+2+3순위)
(상위 8개만 제시)

질문: 한국과학기술평가원에서는, 국가별 기술수준을 평가를 위해 평가전문가단을 구성하고 있습니다. 귀하께서는 평가전문가단 선정하기 위해 가장 고려해야 할 선정기준이 무엇이라고 생각하십니까? 아래 제시된 보기에서 3순위까지 응답해 주십시오.
<table>
<thead>
<tr>
<th><평가전문단 선정시 고려해야할 선정기준 (1순위) (1/2)></th>
<th>사례수</th>
<th>전문분야와 기술분야 연관성</th>
<th>해당 기술분야 연구기간</th>
<th>최종학위와 기술분야 연관성</th>
<th>최근 연구분야</th>
<th>논문의 양과 질</th>
<th>생애 전주기 연구기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>49.4</td>
<td>15.1</td>
<td>14.9</td>
<td>6.6</td>
<td>4.0</td>
<td>3.6</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>48.4</td>
<td>15.8</td>
<td>15.2</td>
<td>6.4</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>62.9</td>
<td>5.7</td>
<td>11.4</td>
<td>8.6</td>
<td>5.7</td>
<td>2.9</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>51.1</td>
<td>15.6</td>
<td>12.2</td>
<td>6.7</td>
<td>1.1</td>
<td>3.3</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>48.5</td>
<td>10.3</td>
<td>21.2</td>
<td>4.2</td>
<td>8.5</td>
<td>1.8</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>49.3</td>
<td>18.9</td>
<td>11.1</td>
<td>7.8</td>
<td>2.3</td>
<td>5.5</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>50.0</td>
<td>13.3</td>
<td>16.7</td>
<td>10.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>44.4</td>
<td>5.6</td>
<td>38.9</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>53.8</td>
<td>8.8</td>
<td>19.4</td>
<td>7.5</td>
<td>4.4</td>
<td>0.6</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>48.4</td>
<td>18.3</td>
<td>11.1</td>
<td>6.7</td>
<td>4.8</td>
<td>4.4</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>44.4</td>
<td>20.8</td>
<td>12.5</td>
<td>4.2</td>
<td>1.4</td>
<td>8.3</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>33.3</td>
<td>8.3</td>
<td>41.7</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>34.2</td>
<td>13.2</td>
<td>26.3</td>
<td>10.5</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>54.7</td>
<td>8.0</td>
<td>20.0</td>
<td>5.3</td>
<td>6.7</td>
<td>0.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>50.4</td>
<td>17.0</td>
<td>11.9</td>
<td>6.4</td>
<td>3.7</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><평가전문단 선정시 고려해야할 선정기준 (1순위) (2/2)></th>
<th>사례수</th>
<th>박사 학위 취득 후 연구 기간</th>
<th>최근 과제수행 내용</th>
<th>평가위원 활동 경험</th>
<th>외부활동 경험</th>
<th>지식재산권 양과 질</th>
<th>자격취득기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>2.2</td>
<td>1.1</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>1.8</td>
<td>1.8</td>
<td>1.2</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>1.4</td>
<td>1.8</td>
<td>0.5</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>3.3</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>1.3</td>
<td>1.9</td>
<td>1.3</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>4.2</td>
<td>1.4</td>
<td>0.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>7.9</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>1.6</td>
<td>1.9</td>
<td>1.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
〈 평가전문단 선정시 고려해야할 선정기준 (1+2+3순위) (1/2) 〉

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>전문 분야와 기술 분야 연관성</th>
<th>해당 기술 분야 연구 기간</th>
<th>최근 연구 분야</th>
<th>최종 학위와 기술 분야 연관성</th>
<th>최근 과제 수행 내용</th>
<th>논문의 양과 질</th>
<th>평가위원 활동 경험</th>
<th>생애 전주기 연구 기간</th>
<th>박사 학위 취득 후 연구 기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>82.3</td>
<td>56.0</td>
<td>36.7</td>
<td>27.9</td>
<td>22.1</td>
<td>18.7</td>
<td>13.1</td>
<td>10.4</td>
<td>9.0</td>
</tr>
<tr>
<td>성별</td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>82.2</td>
<td>56.3</td>
<td>35.8</td>
<td>28.5</td>
<td>22.5</td>
<td>18.4</td>
<td>12.6</td>
<td>10.5</td>
<td>9.2</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>82.9</td>
<td>51.4</td>
<td>48.6</td>
<td>20.0</td>
<td>17.1</td>
<td>22.9</td>
<td>20.0</td>
<td>8.6</td>
<td>5.7</td>
</tr>
<tr>
<td>소속</td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>88.9</td>
<td>51.1</td>
<td>33.3</td>
<td>36.7</td>
<td>22.2</td>
<td>2.2</td>
<td>18.9</td>
<td>10.0</td>
<td>7.8</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>76.4</td>
<td>44.2</td>
<td>37.0</td>
<td>33.9</td>
<td>20.0</td>
<td>34.5</td>
<td>14.5</td>
<td>9.1</td>
<td>9.7</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>83.9</td>
<td>67.7</td>
<td>38.2</td>
<td>19.4</td>
<td>24.0</td>
<td>15.7</td>
<td>8.8</td>
<td>11.5</td>
<td>9.2</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>83.3</td>
<td>50.0</td>
<td>33.3</td>
<td>30.0</td>
<td>20.0</td>
<td>3.3</td>
<td>20.0</td>
<td>10.0</td>
<td>6.7</td>
</tr>
<tr>
<td>연령</td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>61.1</td>
<td>50.0</td>
<td>61.1</td>
<td>44.4</td>
<td>11.1</td>
<td>44.4</td>
<td>5.6</td>
<td>5.6</td>
<td>11.1</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>84.4</td>
<td>45.0</td>
<td>40.0</td>
<td>32.5</td>
<td>24.4</td>
<td>19.4</td>
<td>12.5</td>
<td>5.0</td>
<td>8.8</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>81.7</td>
<td>61.1</td>
<td>35.7</td>
<td>24.2</td>
<td>22.6</td>
<td>19.0</td>
<td>14.7</td>
<td>9.5</td>
<td>9.1</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>84.7</td>
<td>63.9</td>
<td>26.4</td>
<td>26.4</td>
<td>18.1</td>
<td>9.7</td>
<td>11.1</td>
<td>26.4</td>
<td>8.3</td>
</tr>
<tr>
<td>연 구 경력</td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>66.7</td>
<td>33.3</td>
<td>58.3</td>
<td>66.7</td>
<td>25.0</td>
<td>16.7</td>
<td>8.3</td>
<td>0.0</td>
<td>8.3</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>76.3</td>
<td>44.7</td>
<td>47.4</td>
<td>36.8</td>
<td>26.3</td>
<td>26.3</td>
<td>5.3</td>
<td>5.3</td>
<td>10.5</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>88.0</td>
<td>53.3</td>
<td>28.0</td>
<td>33.3</td>
<td>26.7</td>
<td>18.7</td>
<td>13.3</td>
<td>6.7</td>
<td>5.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>82.2</td>
<td>58.4</td>
<td>36.6</td>
<td>24.7</td>
<td>20.7</td>
<td>18.0</td>
<td>14.1</td>
<td>11.9</td>
<td>9.5</td>
</tr>
</tbody>
</table>

〈 평가전문단 선정시 고려해야할 선정기준 (1+2+3순위) (2/2) 〉

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>지식재 산권의 양과 질</th>
<th>외부 활동 경험</th>
<th>저서 및 역사의 양과 질</th>
<th>과제 수행 건수</th>
<th>수상 내역</th>
<th>자격 취득</th>
<th>과제 수행 금액</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>7.4</td>
<td>6.8</td>
<td>2.8</td>
<td>1.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>7.5</td>
<td>6.9</td>
<td>2.8</td>
<td>1.5</td>
<td>0.9</td>
<td>0.9</td>
<td>0.4</td>
<td>1.9</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>5.7</td>
<td>5.7</td>
<td>2.9</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>3.3</td>
<td>12.2</td>
<td>2.2</td>
<td>0.0</td>
<td>1.1</td>
<td>3.3</td>
<td>0.0</td>
<td>5.6</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>7.9</td>
<td>5.5</td>
<td>2.4</td>
<td>1.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>9.7</td>
<td>3.7</td>
<td>2.3</td>
<td>2.3</td>
<td>0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>0.0</td>
<td>20.0</td>
<td>10.0</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>9.4</td>
<td>10.0</td>
<td>2.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>6.3</td>
<td>4.8</td>
<td>4.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>6.9</td>
<td>8.3</td>
<td>0.0</td>
<td>4.2</td>
<td>0.0</td>
<td>2.8</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>연 구 경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>8.3</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>7.9</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>0.0</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>8.0</td>
<td>12.0</td>
<td>1.3</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>7.2</td>
<td>6.1</td>
<td>3.2</td>
<td>1.9</td>
<td>0.5</td>
<td>1.1</td>
<td>0.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>
2. 1순위로 선정한 이유

■ 1순위 응답의 이유에 대해 주관식으로 질문하였고 그 결과는 아래와 같음

[주관식 응답] 1순위로 선정한 이유

<table>
<thead>
<tr>
<th>1순위 응답</th>
<th>선정 이유</th>
</tr>
</thead>
<tbody>
<tr>
<td>생애 전주기 연구기간</td>
<td>• 국내외 고객과 시장기반의 점단기술기반의 수주 및 이들 비탕으로 한 수주경험</td>
</tr>
<tr>
<td>해당 기술분야 연구기간</td>
<td>• 시장투자가 용이한 은퇴 인력</td>
</tr>
</tbody>
</table>
| 전문분야와 기술분야 연관성 | • 에타 등 큰 기획 참여 경험
• 이익/이해관계 여부(상피)
• 주재자 또는 제 1 발명자 |
| 기타 | • 해당 국가 전문성
• 현장에서 제품개발 경험 |
제3절 결과에 대한 활용도

1. 기술수준 평가에서 가장 활용도가 가장 높은 평가항목

기술수준 평가에서 가장 활용도가 높은 평가항목에 대한 질문한 결과, ‘최고 기술 보유율’이라고 응답한 경우가 39.0%(1순위 기준)로 가장 많았고 다음으로 ‘기술수준(%)’ 25.5%, ‘연구개발 활동 경향’ 19.7% 순이었음

1+2+3순위를 기준으로 살펴보면, ‘기술수준(%)’과 ‘기술격차’ 그리고 ‘응용개발 연구역량’에 대한 응답이 상대적으로 많았음

| 기술수준 평가에서 가장 활용도가 가장 높은 평가항목 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 최고 기술 보유율 | 기술수준(%) | 연구개발 활동 경향 | 기술격차(년) | 기초 연구 역량 | 응용개발 연구 역량 | 정책 우선순위 |
| 39.0% | 48.8% | 25.5% | 19.7% | 6.0% | 21.5% | 12.7% |
| 49.0% | 41.2% | 19.7% | 6.0% | 4.0% | 3.0% | 17.3% |

질문. 귀하께서 향후 주신 기술수준평가에서 가장 활용도가 높은 평가항목은 무엇이라고 생각하십니까? 순위별로 2순위까지 말씀해 주십시오.
<table>
<thead>
<tr>
<th>< 기술수준 평가에서 가장 활용도가 가장 높은 평가항목 (1순위)</th>
<th>(단위: %, 1순위)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사례수</td>
<td>최고 기술 보유율</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>전체</td>
<td>502</td>
</tr>
<tr>
<td>성별</td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
</tr>
<tr>
<td>소속</td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
</tr>
<tr>
<td>연령</td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
</tr>
<tr>
<td>연구</td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>< 기술수준 평가에서 가장 활용도가 가장 높은 평가항목 (1+2순위)</th>
<th>(단위: %, 1+2순위)</th>
</tr>
</thead>
<tbody>
<tr>
<td>사례수</td>
<td>기술수준 (%)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>전체</td>
<td>502</td>
</tr>
<tr>
<td>성별</td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
</tr>
<tr>
<td>소속</td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
</tr>
<tr>
<td>연령</td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
</tr>
<tr>
<td>연구</td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
</tr>
</tbody>
</table>
2. 기술수준 평가에서 가장 활용도가 가장 낮은 평가항목

- 기술수준 평가에서 가장 활용도가 낮은 평가항목에 대해 질문한 결과, '정책 우선순위'라고 응답한 경우가 23.1%(1순위 기준)로 가장 많았고 다음으로 '기술격차(년)' 21.1%, '기초 연구 역량' 17.3% 순이었음

- 1+2+3순위를 기준으로 살펴보면, '응용개발 연구역량'에 대한 응답이 상대적으로 많았음

| (Base: 전체 응답자, n=502, 단위: %, 1순위, 1+2순위) |
| --- | --- | --- | --- | --- | --- | --- |
| 정책 우선순위 | 기술격차(년) | 기초 연구 역량 | 연구개발 활동경향 | 최고 기술 보유국 | 응용개발 연구 역량 | 기술수준(%) |
| 23.1 | 43.6 | 40.6 | 33.1 | 19.3 | 16.3 | 24.9 | 8.0 |

 질문. 귀하께서 참여하신 기술수준평가에서 가장 활용도가 낮은 평가항목은 무엇이라고 생각하십니까? 순위별로 2순위까지 말씀해 주십시오.

<p>| (단위: %, 1순위) |
| --- | --- | --- | --- | --- | --- | --- |
| 사례수 | 정책 우선순위 | 기술격차(년) | 기초 연구 역량 | 연구개발 활동경향 | 최고 기술 보유국 | 응용개발 연구 역량 |
| 전체 | 502 | 23.1 | 21.1 | 17.3 | 10.8 | 10.4 | 9.4 | 8.0 |
| 성별 | | | | | | | |
| 남성 | 467 | 22.1 | 20.3 | 17.6 | 11.3 | 10.9 | 9.6 | 8.1 |
| 여성 | 35 | 37.1 | 31.4 | 14.3 | 2.9 | 2.9 | 5.7 | 5.7 |
| 소속 | | | | | | | |
| 산업체 | 90 | 18.9 | 25.6 | 21.1 | 4.4 | 13.3 | 7.8 | 8.9 |
| 학계 | 165 | 26.1 | 21.2 | 11.5 | 12.1 | 12.7 | 8.5 | 7.9 |
| 연구계 | 217 | 22.6 | 20.7 | 17.1 | 11.1 | 7.8 | 12.0 | 8.8 |
| 기타 | 30 | 23.3 | 10.0 | 40.0 | 20.0 | 6.7 | 0.0 | 0.0 |
| 연령 | | | | | | | |
| 30대 | 18 | 16.7 | 11.1 | 5.6 | 0.0 | 33.3 | 11.1 | 22.2 |
| 40대 | 160 | 20.6 | 23.8 | 19.4 | 11.3 | 6.3 | 10.6 | 8.1 |
| 50대 | 252 | 25.0 | 19.8 | 17.9 | 11.9 | 10.7 | 8.3 | 6.3 |
| 60대 이상 | 72 | 23.6 | 22.2 | 13.9 | 8.3 | 12.5 | 9.7 | 9.7 |
| 연구 | | | | | | | |
| 10년 미만 | 12 | 16.7 | 16.7 | 8.3 | 0.0 | 16.7 | 16.7 | 25.0 |
| 10-15년 미만 | 38 | 23.7 | 31.6 | 15.8 | 7.9 | 10.5 | 2.6 | 7.9 |
| 15-20년 미만 | 75 | 22.7 | 21.3 | 10.7 | 16.0 | 13.3 | 9.3 | 6.7 |
| 20년 이상 | 377 | 23.3 | 20.2 | 19.1 | 10.3 | 9.6 | 9.8 | 7.7 |</p>
<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>정책우선순위</th>
<th>기술격차(년)</th>
<th>기초연구역량</th>
<th>응용개발연구역량</th>
<th>연구개발활동경향</th>
<th>기술수준(%)</th>
<th>최고기술보유국</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>43.6</td>
<td>40.6</td>
<td>33.1</td>
<td>24.9</td>
<td>19.3</td>
<td>17.5</td>
<td>16.3</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>42.8</td>
<td>39.6</td>
<td>33.2</td>
<td>25.3</td>
<td>19.9</td>
<td>18.2</td>
<td>16.7</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>54.3</td>
<td>54.3</td>
<td>31.4</td>
<td>20.0</td>
<td>11.4</td>
<td>8.6</td>
<td>11.4</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>32.2</td>
<td>43.3</td>
<td>38.9</td>
<td>20.0</td>
<td>16.7</td>
<td>20.0</td>
<td>23.3</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>50.9</td>
<td>41.8</td>
<td>24.2</td>
<td>23.6</td>
<td>21.8</td>
<td>18.2</td>
<td>17.0</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>41.5</td>
<td>41.9</td>
<td>34.1</td>
<td>27.6</td>
<td>17.5</td>
<td>17.5</td>
<td>13.4</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>53.3</td>
<td>16.7</td>
<td>56.7</td>
<td>26.7</td>
<td>26.7</td>
<td>6.7</td>
<td>13.3</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>27.8</td>
<td>55.6</td>
<td>22.2</td>
<td>11.1</td>
<td>16.7</td>
<td>22.2</td>
<td>38.9</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>41.9</td>
<td>40.0</td>
<td>33.8</td>
<td>26.3</td>
<td>20.0</td>
<td>17.5</td>
<td>13.1</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>47.2</td>
<td>36.9</td>
<td>32.1</td>
<td>26.6</td>
<td>21.0</td>
<td>14.7</td>
<td>17.5</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>38.9</td>
<td>51.4</td>
<td>37.5</td>
<td>19.4</td>
<td>12.5</td>
<td>26.4</td>
<td>13.9</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>25.0</td>
<td>58.3</td>
<td>16.7</td>
<td>33.3</td>
<td>16.7</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>47.4</td>
<td>47.4</td>
<td>31.6</td>
<td>13.2</td>
<td>23.7</td>
<td>13.2</td>
<td>15.8</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>44.0</td>
<td>36.0</td>
<td>26.7</td>
<td>20.0</td>
<td>24.0</td>
<td>17.3</td>
<td>24.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>43.8</td>
<td>40.3</td>
<td>35.0</td>
<td>26.8</td>
<td>18.0</td>
<td>17.8</td>
<td>14.6</td>
</tr>
</tbody>
</table>
3. 기술수준 평가의 활용도를 높이기 위해 추가적으로 필요한 항목

- 기술수준 평가의 활용도를 높이기 위해 추가적으로 필요한 항목에 대해 점문한 결과, ‘기술의 미래 트렌드 및 예측’이라고 응답한 경우가 53.4%(1순위 기준)로 과반수를 차지하였음
- 1+2+3순위를 기준으로 살펴보면, ‘일자리 창출, 경제성장, 산업 혁신 등 기술 발전의 경제적 영향’에 대한 응답이 상대적으로 많았음

< 기술수준 평가의 활용도를 높이기 위해 추가적으로 필요한 항목 >

(Base: 전체 응답자, n=502, 단위: %, 1순위, 1+2순위)

<table>
<thead>
<tr>
<th>항목</th>
<th>1순위</th>
<th>1+2순위</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술의 미래 트렌드 및 예측</td>
<td>53.4</td>
<td>66.7</td>
</tr>
<tr>
<td>투자 및 연구비 조달 현황</td>
<td>17.5</td>
<td>39.8</td>
</tr>
<tr>
<td>새로운 기술을 지원하기 위한 인프라 준비도</td>
<td>7.2</td>
<td>19.7</td>
</tr>
<tr>
<td>지적재산권 및 특허 환경</td>
<td>6.2</td>
<td>14.3</td>
</tr>
<tr>
<td>국제협력 및 파트너십</td>
<td>3.8</td>
<td>12.4</td>
</tr>
<tr>
<td>일자리 창출, 경제 성장, 산업 혁신 등 기술 발전의 경제적 영향</td>
<td>3.4</td>
<td>16.7</td>
</tr>
</tbody>
</table>

질문: 기술수준평가의 활용도를 현재보다 더 높이기 위해서 델피 조사에 추가적으로 필요한 항목은 무엇이라고 생각하시나요? 순위별로 2순위까지 말씀해 주십시오.

< 기술수준 평가의 활용도를 높이기 위해 추가적으로 필요한 항목(1순위) (1/2) >

(단위: %, 1순위)

<table>
<thead>
<tr>
<th>항목</th>
<th>사례수</th>
<th>기술의 미래 트렌드 및 예측</th>
<th>새로운 기술을 지원하기 위한 인프라 준비도</th>
<th>지적재산권 및 특허 환경</th>
<th>국제협력 및 파트너십</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전체</td>
<td>502</td>
<td>53.4</td>
<td>17.5</td>
<td>7.2</td>
</tr>
<tr>
<td>성별</td>
<td>남성</td>
<td>467</td>
<td>54.0</td>
<td>18.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>여성</td>
<td>35</td>
<td>45.7</td>
<td>17.1</td>
<td>17.1</td>
</tr>
<tr>
<td>소속</td>
<td>산업계</td>
<td>90</td>
<td>63.3</td>
<td>11.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>학계</td>
<td>165</td>
<td>46.1</td>
<td>19.2</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>연구계</td>
<td>217</td>
<td>52.5</td>
<td>19.4</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>기타</td>
<td>30</td>
<td>70.0</td>
<td>3.3</td>
<td>6.7</td>
</tr>
<tr>
<td>연령</td>
<td>30대</td>
<td>18</td>
<td>33.3</td>
<td>33.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>40대</td>
<td>160</td>
<td>58.1</td>
<td>15.0</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>50대</td>
<td>252</td>
<td>51.2</td>
<td>17.5</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>60대 이상</td>
<td>72</td>
<td>55.6</td>
<td>19.4</td>
<td>9.7</td>
</tr>
<tr>
<td>연구</td>
<td>10년 미만</td>
<td>12</td>
<td>58.3</td>
<td>16.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>10~15년 미만</td>
<td>38</td>
<td>42.1</td>
<td>23.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>15~20년 미만</td>
<td>75</td>
<td>49.3</td>
<td>18.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>20년 이상</td>
<td>377</td>
<td>55.2</td>
<td>16.7</td>
<td>8.0</td>
</tr>
</tbody>
</table>

267
<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>일자리 창출, 경제 성장, 산업 혁신 등 기술 발전의 경제적 영향</th>
<th>교육 및 협력 시스템</th>
<th>규제 환경</th>
<th>기술채택 및 확산물</th>
<th>지속 가능성 및 윤리적 고려</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>3.4</td>
<td>3.4</td>
<td>2.4</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>3.2</td>
<td>3.4</td>
<td>1.9</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>5.7</td>
<td>2.9</td>
<td>8.6</td>
<td>5.7</td>
<td>2.9</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>사업가</td>
<td>90</td>
<td>2.2</td>
<td>2.2</td>
<td>3.3</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>4.8</td>
<td>7.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.2</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>2.3</td>
<td>1.4</td>
<td>1.8</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>0.0</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>3.6</td>
<td>4.4</td>
<td>2.8</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>5.6</td>
<td>1.4</td>
<td>0.0</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>연구 경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>0.0</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>0.0</td>
<td>5.3</td>
<td>0.0</td>
<td>5.3</td>
<td>0.0</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>6.7</td>
<td>2.7</td>
<td>2.7</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>3.2</td>
<td>2.4</td>
<td>2.4</td>
<td>1.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>기술의 미래 트렌드 및 예측</th>
<th>투자 및 연구비 조달 현황</th>
<th>새로운 기술을 지원하기 위한 인프라 준비도</th>
<th>일자리 창출, 경제 성장, 산업 혁신 등 기술 발전의 경제적 영향</th>
<th>지속재산권 및 특허 환경</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>66.7</td>
<td>39.8</td>
<td>19.7</td>
<td>16.7</td>
<td>14.3</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>67.2</td>
<td>40.9</td>
<td>19.3</td>
<td>16.1</td>
<td>14.8</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>60.0</td>
<td>25.7</td>
<td>25.7</td>
<td>25.7</td>
<td>8.6</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>사업가</td>
<td>90</td>
<td>72.2</td>
<td>32.2</td>
<td>12.2</td>
<td>21.1</td>
<td>12.2</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>59.4</td>
<td>41.8</td>
<td>21.8</td>
<td>17.6</td>
<td>12.7</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>68.2</td>
<td>40.6</td>
<td>21.7</td>
<td>12.4</td>
<td>17.5</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>80.0</td>
<td>46.7</td>
<td>16.7</td>
<td>30.0</td>
<td>6.7</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>33.3</td>
<td>66.7</td>
<td>22.2</td>
<td>0.0</td>
<td>16.7</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>71.3</td>
<td>33.8</td>
<td>20.6</td>
<td>16.9</td>
<td>15.6</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>67.1</td>
<td>40.1</td>
<td>18.7</td>
<td>17.1</td>
<td>13.9</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>63.9</td>
<td>45.8</td>
<td>20.8</td>
<td>19.4</td>
<td>12.5</td>
</tr>
<tr>
<td>연구 경력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>58.3</td>
<td>41.7</td>
<td>33.3</td>
<td>8.3</td>
<td>16.7</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>60.5</td>
<td>44.7</td>
<td>13.2</td>
<td>10.5</td>
<td>13.2</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>58.7</td>
<td>41.3</td>
<td>25.3</td>
<td>16.0</td>
<td>17.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>69.2</td>
<td>39.0</td>
<td>18.8</td>
<td>17.8</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>시례수</td>
<td>국제협력 및 파트너십</td>
<td>기술채택 및 확산률</td>
<td>교육 및 훈련 시스템</td>
<td>규제 환경</td>
<td>지속 가능성 및 윤리적 고려</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>전체</td>
<td>502</td>
<td>12.4</td>
<td>9.0</td>
<td>8.6</td>
<td>8.0</td>
<td>2.4</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>12.4</td>
<td>8.6</td>
<td>8.6</td>
<td>7.5</td>
<td>2.1</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>11.4</td>
<td>14.3</td>
<td>8.6</td>
<td>14.3</td>
<td>5.7</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>13.3</td>
<td>5.5</td>
<td>18.2</td>
<td>6.1</td>
<td>0.6</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>11.5</td>
<td>11.1</td>
<td>2.3</td>
<td>8.3</td>
<td>3.2</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>6.7</td>
<td>10.0</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>11.1</td>
<td>5.6</td>
<td>27.8</td>
<td>16.7</td>
<td>0.0</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>13.1</td>
<td>7.5</td>
<td>8.1</td>
<td>10.0</td>
<td>1.9</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>11.5</td>
<td>10.3</td>
<td>8.3</td>
<td>7.5</td>
<td>2.0</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>13.9</td>
<td>8.3</td>
<td>5.6</td>
<td>2.8</td>
<td>5.6</td>
</tr>
<tr>
<td>연구 경험</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>0.0</td>
<td>8.3</td>
<td>8.3</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>15.8</td>
<td>13.2</td>
<td>15.8</td>
<td>7.9</td>
<td>2.6</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>12.0</td>
<td>8.0</td>
<td>9.3</td>
<td>9.3</td>
<td>1.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>12.5</td>
<td>8.8</td>
<td>7.7</td>
<td>7.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>
제4절 전반적인 평가

1. 기술수준 평가 참여경험이 연구 및 업무에 도움이 되는 정도

* 기술수준 평가의 참여경험이 연구 및 업무에 도움이 되는 정도에 대해 질문한 결과, 7점 척도 기준 평균 5.51점으로 조사되어 보통과 매우 도움 되었음 사이로 응답되었음

〈 기술수준 평가 참여경험이 연구 및 업무에 도움이 되는 정도 〉

(Base: 전체 응답자, n=502, 단위: %, 7점척도, 평균)

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>전혀 도움되지 않음</th>
<th>보통</th>
<th>매우 도움 되었음</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>0.2</td>
<td>0.6</td>
<td>2.2</td>
<td>5.51</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>0.2</td>
<td>0.6</td>
<td>2.4</td>
<td>5.52</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>0.0</td>
<td>0.0</td>
<td>15.2</td>
<td>5.37</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.78</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>1.2</td>
<td>4.2</td>
<td>24.8</td>
<td>5.19</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>0.5</td>
<td>1.8</td>
<td>12.0</td>
<td>5.58</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
<td>13.3</td>
<td>5.97</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>0.0</td>
<td>0.0</td>
<td>22.2</td>
<td>4.72</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>0.0</td>
<td>0.0</td>
<td>3.1</td>
<td>5.46</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>0.4</td>
<td>1.2</td>
<td>0.8</td>
<td>5.54</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>0.0</td>
<td>0.0</td>
<td>19.4</td>
<td>5.71</td>
</tr>
<tr>
<td>연 구 경 력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>16.7</td>
<td>5.17</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
<td>5.3</td>
<td>5.32</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>5.60</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>0.3</td>
<td>0.8</td>
<td>1.1</td>
<td>5.52</td>
</tr>
</tbody>
</table>

문. 귀하께서 기술수준평가에 참여하신 경험이, 귀하의 연구 및 업무에 얼마나 도움이 되셨습니까?
2. 도움이 된 이유/내용/사례

기술후강의 대학이 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.

[주관적 응답] 도움이 된 이유/내용/사례

<table>
<thead>
<tr>
<th>대분류</th>
<th>이유 / 내용 / 사례</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 건설·교통</td>
<td></td>
</tr>
</tbody>
</table>
| | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| | 건설·교통 |
| | | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| | | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| | | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| | | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| | | 과학기술 분야별 기술후강의 기관화에 도움이 됨
| | | 과학기술분야의 도움이 된 이유/내용/사례에 대해 주관적으로 질문하였고 그 결과를 응답자 사례분야(11개 분야)별로 구분하여 정리하였습니다.
| ② 재난안전 |
| | 경향주의 세관격 연구 동향 파악
| | 관련 기술 수준 평가를 위하여 제공되는 논문/특허 조사 보고서와 함께 평가를 위하여 부가적으로 관련 자료(예: 산기학 및 산업동향 조사 보고서등)를 자연스럽게 조사하게 되면서, 연구과제 기획 및 제안서 작성에 활용하게 됨
| | 전체 주요 국가들의 현황을 본 평가에 참여하면서 통계적 정보와 다른 평가자들의 의견 등도 검토할 수 있어 본인이 갖고 있는 통찰력에 오점을 없는지를 객관적으로 비교하는 기회 사례에서 도움이 됨
| | 제공된 자료와 평가를 위한 별도의 학습을 통해, 선진국과 우리나라의 기술 수준격차 및 트렌드를 이해하는 데 도움이 됨
| | 최근 기술 흐름 및 수준을 연구함으로써, 신기술에 대한 기술 동향 및 수준에 긍정적 도움이 됨
| | 특정 분야별(예를 들어 기상, 기후변화, 재난재해 등)에 대해 별도로 추적하고 있는 기술수준조사와의 비교를 통해 조사 결과의 합리성을 미루어 검토할 수 있으며, 연구개발을 위한 전략 수립, 새로운 과제 발굴을 위한 기초자료로도 많은 활용이 있었음
| | 현재 기술 수준과 앞으로 어떤 방향으로 발전해 나갈 것인지에 대해 알 수 있는 것이 큰 도움이 됨, 연구자로서 학생들이 미래를 준비할 수 있게 하는 기업이란을 제시할 수 있음
| ③ 우주·항공·해양 |
| | 경향주의 기술수준 파악 및 개발 로드맵 작성에 도움을 받음
| | 관련 분야 기획 및 근거 활용
| | 관심분야 기술수준 정도에 대한 이해
| | 국제적 경향을 알 수 있음
| | 국제협력을 통한 공동연구 및 국제프로그램 참여하는데 있어 접촉하기 위한 기관 선정
| | 기술수준 평가를 기계로 자속적인 기술 트렌드 모니터링
| | 기술평가를 통해서 진행하는 정책과제들의 현황을 파악하고 문제점 개선에 대한 의견을 가질 수 있음
| | 다른 전문가들의 결과를 보면서, 응답한 내용을 보면서 다른 관점이 있다는 것을 이해함
| | 선진국 및 국내의 전반적인 연구개발 기술 수준 동향 파악에 도움
| | 스스로 발전방향을 분석하고 정리하는 계기가 되었음

271
<table>
<thead>
<tr>
<th>대분류</th>
<th>이유 / 내용 / 사례</th>
</tr>
</thead>
</table>
| ④ 국방 | ● 개발 현황을 알고 있기 때문인(극초음속 개발 현황 및 정밀타격 무기체계 현황 러시아의 극초음속 무기체)
● 국방 분야에서 무관 업무 수행 중
● 기술수준평가에 참여하면서 기 확보 내용을 정리할 수 있는 기회가 되었고, 신규 자료/트랜드를 조사할 수 있게 됐다. 그리고 제공받은 자료로 정성적, 정량적 기술 흐름 파악에도 도움이 됐다. 이를 토대로 과제 기획, 계획에 기술 수준 및 동향에 반영하여 활용할 수 있겠었다.
● 대상국가의 최신기술들을 검색하여 해심기술이나 기술수준들을 파악하여 업무에 활용 중임
● 본인의 전문 분야 외에도 유사하거나 관련된 타 분야의 기술수준을 파악하여 되에 본인이 참여한 기술개발에 참고가 많이 되었고 생각됨
● 연구계획수립에서 기술 발전 동향 등을 파악하는 데 도움을 줄 |
| ⑤ 기계·조제 | ● 관련 분야 기술수준에 대한 짤로토 기회를 가짐
● 관련기술의 양적 및 활용기지 분석 등 차별화 전략
● 글로벌 기술 수준, 연구개발 동향 분석 및 제품화와 시장 전망 분석 등을 통해 미래 필요 기술 파악
● 산업체 종사자로서 국가 간 기술경쟁력 분석에 관한 여러 데이터 활용, 참가(가족적인 자식 합창) 및 정책 반영을 위한 평가 항목별 의견 개진을 통한 정밀의 목표 설정은 도달할 수 있는 부분도 도움이 됨
● 연구개발 과정에서 단순히 기술에만 집중하는 것이 아니라 지속가능성, 교육/훈련, 타 기관/국가와의 협력, 트렌드 변화 등 널리 사례를 참고하고 급속히 변화하는 트랜드에 대응해야 함을 되새기게 됨
● 연구기관에서 근무하다 보니 현재 담당한 업무와 관련된 기술 위주로 파악을 해가지는데 기술수준평가 과정에서 제공된 자료들을 통해서 주 관심 분야 이외의 동향이나 관련 연구자들의 인식 정도를 확인할 수 있어서 도움이 됨
● 연구 기관에서 정보를 갖고 해외인과 관련하여 제안과 PT를 하는데 있어 신뢰적인 자료로서의 가치가 있음
● 참여하면 해외 기술동향에 대해 좀 더 참여보고 분석할 수 있는 기회임
● 평가를 진행하며, 기술개발이 진행되어야 할 분야와 집중 투자가 이루어져야 하는 분야가 파악됨
● 목표로 사례를 유치할 수 있도록 스스로 공부하고 개발하게 되는 예기를 가질수록 함
● 신규분야의 경우 좀 더 조사할 수 있는 것이내가 있어서 도움이 됨 |
| ⑥ 소재·나노 | ● 기술수준 평기를 위해 자료조사를 하게 됐는데 기술트랜드 변화를 파악하게 됨
● 기술수준을 다시 한 번 고민하는 계기가 되어 다수의 전문가 평가 결과와 비교 가능함
● 기술수준평가의 세부적인 수준에 기술 수준을 정량적으로 평가하여 자국의 기술력을 알아보는데 중요함. 이를 토대로 앞으로 기술 동향의 판다딩을 설정하는데 중요할 것임
● 연구 분야 선정 및 기획에 참조
● 연구분야에 매진하다 보니 본 연구는 사례가 좋아지는 기술수준평가에 참여하게 되면 전반적인 현황을 다시 돌아보게 되어 보다 넓고 개방적인 마인드로 연구에 임할 수 있었음.
● 유사 분야에서 이상이 있는 연구 분야를 파악할 수 있었고, 국가 간의 논문, 특히 흐름의 파악이 가능함
● 제 분야에 대한 다른 전문가의 의견도 확인할 수 있어 현재 제 분야의 기술수준을 객관적으로 확인할 수 있어 도움이 됨
● 지속적으로 업데이트 되는 주요 국가들의 기술수준 변화 추이 탐색을 통해 가시적 측면의 개발 방향 및 목표(정량) 수립을 위한 기초 자료로 활용 가능
● 해당 기술과 관련하여 평가 대상이 다소 국가에 대한 전반 연구 동향 및 시장 현황을 정리할 수 있는 기회가 됨 |
질문. 귀하께서는, 기술수준평가에 참여하시는 것이 도움이 되셨다고 응답하셨습니다. 도움이 된 이유/내용/사례를 자유롭게 말씀해 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>이유 / 내용 / 사례</th>
</tr>
</thead>
</table>
| ⑦ 농림수산·식품 | - 기술 비교를 통한 R&D 수행
- 기술 선진국에 대한 기술동향 파악과 국외간 협력에 있어서는 다른 제도변화 변화의 흐름을 알 수 있고, 향후 이에 따른 규제의 움직임을 사전에 예측하는 데 많은 도움이 됨. 또한 평가 결과에 따라 정부의 정책수립에 대한 예측이 가능하며 사업계획 수립에 참조가 되며, 현재 많은 기관들이 수행하는 연구 활동과 연구결과물에 대한 가르침을 판단하는 데 있어 좋은 자료가 됨
- 기술수준 연구개발 방향성 공공성, 미래원천기술 선정 등
- 연구개발 및 기술지도에 우리나라 기술수준 및 기술격차에 대한 기술자료를 이용하는 경우가 많고, 새로운 정보를 접한 사람들이 자신의 활동에 대한 자부심 혹은 기여도 등을 생각하는 기회를 부여하고 있음
- 연구개발 업데이트를 통한 트렌드 이해에 도움(예 : 최근 유용용수자재를 이용한 적물 개량 실험)
- 연구를 하면서 자취가사적 관점을 높이기 쉬운데 이러한 기술수준평가를 통해 연구에 있어 가시적 관점을 가질 수 있어 도움이 된다고 응답함
- 외국 대비 국내 연구 분야의 부족한 점을 파악할 수 있으며, 기술 선도국의 동향을 파악하는데도 도움이 됨(예 : 식품숙과 세균의 유전체 정보를 이용해 원인을 추정해 나가는 트렌드 기술 등)
- 획득기술 경향과 최고 기술 보유국의 기술 수준을 비교할 수 있어 대형과제 기획에 참고할 수 있음
- 현재의 기술수준 진단을 통해서 미래기술의 예측이 가능함 |
| ⑧ 생명·보건의료 | 관련 분야에 대한 평가 후 해당 분야에 대한 관심과 고통이 커져 향후 어떠한 발전 가능 연구에 좀 더 매진하는 것이 중요하다고 생각해보게 됨. 후배들이나 관련 연구자들에게 우리가 갖고 있는 기술자료에 대한 틀이 적게 되고, 교육의 방향성도 고민해 보게 됨. 기술 격차를 줄일 수 있는 기초 연구에 대한 역량 강화 및 연구비 책정 등을 포함한 인프라 구축 등에 대한 고민을 갖게 됨.
- 국제협력 또는 벤처마킹 시 도움이 될 수 있음
- 기술 경제 국가외의 수준 및 상황을 이해하는데 도움이 됨
- 기술 수준평가를 통해 현 기술의 트렌드와 파악하고 우리 기술의 수준을 가능하게 볼 수 있음
- 기술수준 평가 참여를 통해 다양한 기술에 대한 정보를 얻을 수 있고 활용 관점에서 다양한 기술을 적용할 아이디어를 기획하는데 도움이 됨
- 기술수준 평가를 위해 다양한 자료를 찾아보고 논문, 특허 등을 새롭게 검색하여 기술의 현재 위치와 미래 기지를 확인할 수 있어서 나의 연구 현장을 되돌아 볼 수 있었음
- 앞서간 연구를 파악하고 앞으로는 연구의 어려운 환경을 개선하면 보다 나은 연구 결과를 도출하고 Speed-Up 할 수 있음
- 유전자 차별법 분야의 내용을 확인하고 좀 더 자료를 찾아서 연구하여 연구할
- 현재 제가 연구하고 있는 분야에 대한 세계적 동향을 구체적으로 확인할 수 있었고, 이를 기반으로 국가과학기술청 신청 시 과제 주제 및 방향성을 설정하는데 도움이 되었고 선정하는데 많은 영향을 미쳤다고 생각함 |
| ⑨ 에너지·자원 | 관련 분야 전문가들이 해당 분야에 대해 판단하고 있는 수준을 공유할 수 있음
- 각국의 기술수준내용을 파악이 가능하므로 관련 기술조사 및 개발목표를 정하는데 도움이 됨
- 국가별 사례를 바탕으로 해당 국가간의 협력 사업 추진
- 국내의 관련 산업 및 학술적 연구에 도움
- 기술 트랜드 및 정책의 방향을 이해할 수 있어 중장기적인 연구개발 로드맵 수립에 도움이 됨
- 기술개발경과의 차이에 대한 각각화 수치화
- 논문 등록 및 기술동향 분석 자료가 도움이 됨
- 새로운 연구 제안서 작성에 도움이 되고 있음
- 세계적 기술수요 및 개발동향 이해 증진
- 연구 및 정책 동향 참고
- 우리나라 기술력의 현주소와 경쟁력을 파악하고, 기술향상을 위해 노력해야할 항목들을 인식할 수 있었음 |
질문. 귀하께서는, 기술수준평가에 참여하시는 것이 도움이 되셨다고 응답하셨습니다. 도움이 된 이유/내용/사례를 자유롭게 말씀해 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>이유 / 내용 / 사례</th>
</tr>
</thead>
</table>
| 환경·기상 | • 현재 국내외의 기술개발 수준이 우리기술과 차이점, 무엇에 중점을 두고 개발계획을 세워야 하는지에 대한 영향을 줄 수 있음
•과도한 기술 정책, 특성 등에 더 관심을 기울임
•관련 분야의 최신 동향을 더 잘 파악할 수 있음
•기술 수준을 고려한 해당 연구의 연구목적 및 필요성 명확해짐을 알 수 있었음
•기술 분야에서 다른 전문가들과 논의의 생활 차이를 발견하고, 이에 대해서 다시 한 번 생각할 계기가 됨
•연구를 할 때 해당 국가에서 출간한 논문을 더 자주 보게 됨
•전반적으로 더 복잡한 시각을 가지게 되었고 신재한 지식이나 경험을 종합해 정리하는 기회가 됨 |
| ICT·SW | • 각 국가의 기술 수준 평가를 통해 기술개발 중점 추진 아이템을 발굴하고 시장성과 판단하는데 큰 도움이 됨
•개인 의견과 전달하는 것이 아니라 다른 전문가들과의 평가 결과를 공유함으로써 제가 판단하고 있는 상태에 대한 오류나 새로 고려해야 할 상황을 검토할 수 있었음
•객관적으로 기술 현황 비교할 기회, 기술별 기술 격차와 중점을 내용 확인 가능
•기술 분야의 전문 분야에 대한 트렌드를 조사하고, 원인을 분석하는 과정에서 다양한 지식을 습득하게 됨
•그러나, 산업적인 현황을 파악하여 구체적인 사업화 방안에 대한 내용을 이해할 수 있었음
•전반적으로 각각의 관점에서의 연구동향을 접할 수 있는 기회가 되어, 관심 연구 분야의 연구개발 방향성 설정에 도움이 됨
•국내 기술 수준에 대하여 제고할 기회와 해외 기술 동향을 점검하는 기회가 되었으며, 국내 기술 개발 전문가로서 국가기술 수준 평가의 객관성 확보에 이바지할 수 있다는 보람
•국내 기술에 대한 현황 파악, 국가 R&D 투자 방식의 문제점 등을 파악할 수 있었음
•미국, 중국 등 상대국과의 기술격차를 실감하는 계기가 되었으며, 국내 후속 정책의 필요성과 연구의 절차 수준을 위한 노력의 중요성을 다시 한 번 느끼게 됨
•본 조사를 위하여 해당 기초자료를 검토하고 분석함으로 업무에 도움이 됨
•정부의 과제 기획 등에 큰 도움이 됨
•후발 주자들의 동향 파악 |
3. ’24년 기술수준평가 텔파이 조사에 참여할 의향

■ ’24년 기술수준평가 텔파이 조사에 참여할 의향에 대해 의견을 묻어본 결과, 응답자의 94.8%가 참여의향이 있다고 응답하였음

〈 ’24년 기술수준평가 텔파이 조사에 참여할 의향 〉
(Base: 전체 응답자, n=502, 단위: %)

<table>
<thead>
<tr>
<th>참여의향있음 (94.8%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲ 예 (참여의향 있음)</td>
</tr>
<tr>
<td>▼ 아니오 (참여의향 없음)</td>
</tr>
</tbody>
</table>

설문. 귀하께서는 내년에 진행예정인 ’24년 기술수준평가 텔파이 조사에 참여해 주실 의향이 있으신가요?

〈 ’24년 기술수준평가 텔파이 조사에 참여할 의향 〉
(단위: %)

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>예(의향 있음)</th>
<th>아니오(의향 없음)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>94.8</td>
<td>5.2</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>95.1</td>
<td>4.9</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>91.4</td>
<td>8.6</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>96.7</td>
<td>3.3</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>92.7</td>
<td>7.3</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>95.9</td>
<td>4.1</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>93.3</td>
<td>6.7</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>94.4</td>
<td>5.6</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>96.9</td>
<td>3.1</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>94.0</td>
<td>6.0</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>93.1</td>
<td>6.9</td>
</tr>
<tr>
<td>연구경력</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>91.7</td>
<td>8.3</td>
</tr>
<tr>
<td>10-15년 미만</td>
<td>38</td>
<td>94.7</td>
<td>5.3</td>
</tr>
<tr>
<td>15-20년 미만</td>
<td>75</td>
<td>98.7</td>
<td>1.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>94.2</td>
<td>5.8</td>
</tr>
</tbody>
</table>
4. 참여하기 어려운 이유

참여하기 어려운 이유에 대해 주관적으로 질문하였고 그 결과를 응답자 전문분야(11개 분야)별로 구분하여 정리하였습니다.

[주관식 응답] 참여하기 어려운 이유

<table>
<thead>
<tr>
<th>대분류</th>
<th>참여 어려운 이유</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 건설·교통</td>
<td>• 12월 말 정년퇴직
• 기획업무를 하지 않은지 수년이 경과하여 기술수준평가에 관한 정확한 판단을 내리기 어렵다고 생각함
• 제한된 자료 조사로 인한 한계</td>
</tr>
<tr>
<td>2. 재난안전</td>
<td>• 업무분야가 변경됨</td>
</tr>
<tr>
<td>3. 우주·항공·해양</td>
<td>• 이 조사가 평가자의 편향이나 경험의 한계를 넘어서기 위해서는 평가자의 성격이 가장 중요할 것 같음. 23년 조사에 응하면서 successor가 국제적인 식단이 부족함을 느끼며, 더 많은 경험을 쌓아서 전체가 보이게 참여하면서 더 좋은 자료가 얻어지길 바람
• 현재의 평가 방식이 어렵게 너무 추상적임. 스스로 생각하는 기술 수준이나 성향을 멀리 조사 양식에 반영하기 어려움</td>
</tr>
<tr>
<td>4. 국방</td>
<td>• 관련 분야 트렌드 파악 어려움</td>
</tr>
<tr>
<td>5. 농림수산·식품</td>
<td>• 시간이 많이 소요되고 어려움</td>
</tr>
<tr>
<td>6. 생명·보건의료</td>
<td>• 기술조사를 실문조사 수준으로 해서 제대로 된 평가가 어렵다고 판단됨. 시간이 많이 쌓아서해야 한다고 생각함
• 해당 분야의 신규 전문가가 참여하면 더욱 좋을 것 같습니다.</td>
</tr>
<tr>
<td>7. 에너지·자원</td>
<td>• 개인 시간 투입이 필요함
• 기존 평가 조사에 참여했던 전문가의 의견보다 새로운 전문가의 사연에서 조사가 이루어지면 좋은 의견을 수렴할 수 있을 것으로 사료됨</td>
</tr>
<tr>
<td>8. 환경·기상</td>
<td>• 24년 일정을 현재 일 수 없어서 멀리 조사 시 가능한 일정이라 점근 참여 예정
• 미래예측과 다른 외국의 기술현장에 대해서 실제적으로 깊은 자식이 없어(피상적이고 단면적으로만 알고 있음) 예측하는데 어려움이 따른다</td>
</tr>
<tr>
<td>9. ICT·SW</td>
<td>• 평기를 요청 받은 기술 분야가 현재 진행하고 있는 연구 주제와 연관성이 다소 떨어지는 분야라 평가의 객관성과 정확성을 달보하기 어려운 점이 있었음
• 평가하기 위한 자료가 부족하여, 개인적으로 찾아보고 비교해 보고 평가해야 되므로 시간이 오래 걸리 부담됨. 또한, 평가에 대한 보상이 없는 부분도 아쉬움</td>
</tr>
</tbody>
</table>
5. 기술수준평가 진행시 예로사항 및 요구사항

■ 기술수준 평가 진행시 느껴진 예로사항 및 요구사항에 대해 질문하였고 그 결과를 응답자 전문분야 (11개 분야)별로 구분하여 정리하였음

[주관식 응답] 기술수준평가 진행시 예로사항 및 요구사항

질문. 기술수준평가의 진행 과정에서 느껴졌던 기타 예로사항 및 추후 요구사항 등이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>예로사항 및 추후 요구사항</th>
</tr>
</thead>
</table>
| 건설·교통 | • 관련 자료 충분하게 제공할지 바랍니다.
• 국가별 동향을 파악하고 기술개발의 정도를 %로 나타내거나, 순위를 가리는 것에 있어서 정보가 충분하지 않은 상황에서는 주관적인 평가가 될 수 있어서 어려움이 있음
• 기술수준 불확실성 제기 필요
• 기술수준평가가 너무 학술적 관점에 차우쳐 있는 것으로 보임. 산업계 인사들도 매우 미흡함. 보고서 서로 네트워크도 하고 기술수준에 대한 토의도 했으면 좋겠음. 이에 다음의 방법을 제안함
• (학생연구) Track 항목 또는 연구단체가 모여서 기술수준 평가를 분야 1회 시행
• (산업경) Track 산업계 주요 인사들이 모여 기술수준평가 수행
• (산업과정) Track 학계/연구계 Track과 산업계 Track이 모여서 최종적으로 기술수준평가의 합의를 도출
• 기술수준평가의 의미와 가치에 대해 본연 연구자들이 폭넓게 이해할 수 있도록 홍보가 필요
• 세부적인 분야가 구체화되며 좋음
• 연차별로 내용이 유사함
• 이전 기술수준 평가 진행결과 및 관련 보고서(있을 경우) 등을 공유해주시면 좋겠음
• 이해관계자의 평가 개입을 방지하기 위해 상피제도를 좀 더 깊이 기준을 정하고 적용하였음
• 따라서, 상피제도를 고의로 이건 자가에서는 일정 수준의 폐널타를 가하는 규칙도 필요할 것 같음
• 평가기간을 조금 더 늘려주시면 좋겠음
• 기술의 변화가 엄청난 속도로 바뀌고 있는 현실에서, 분야별 평가단위에 미래기술의 포함이 필요함
• 평가기준으로 2차 3차 조사가 효과적일 것 같음
• 해당사항을 선택하는 이유를 적어야 하는데 부담이 있음. 사유에 대한 선택 리스트를 만들어 선택할 수 있도록 하고 의견을 추가할 수 있도록 하면 좋겠음 |
| 재난안전 | • 각 분야의 세계적인 연구 기술 자료 및 향후 발전에 대한 연구보고서를 공지 필요
• 관련 기술에 대한 전반적인 기술 설명 및 국가별, 관련 기술 투자 및 예산정보가 있으면 좋을 것 같음
• 기술수준 평가 기준이 필요
• 많은 분야를 요약적으로 기술수준평가를 진행하되, 세밀한 분야에 대한 고찰이 쉽지 않은 측면이 있는데, 이를 보는 것도 중요한 만큼 한국이라는 국가 입장에서 어떠한 나무에 잡을 해서 전체적인 측면에서 자리를 차지할 것인지 둘 수 있도록 하는 방안이 반영되어 좋을 듯함
• 사전의 부분이 다소 없음
• 시행에 적합하게 제공되고 있어 특별히 어려운 점이 있는지, 과거자문회의 회의록 등의 허의도 등이 수렴되고 있는지에 대한 사항이 표기되고 있음. 2차 편집이 조사 이후 이에 분과별로 미각으로 결과를 확인할 수 있으면 좋겠음(이로 정도 합의를 이루었는지, 수렴을 하였는지에 대한 사항 등)
• 도전과제, 정부의 기술투자 등의 내용이 추가로 있으면 함
• 조사하기에 배경이나 목적을 명확히 할 필요가 있음
• 평가기간을 충분히 주고 평가에 대한 비용도 대폭 강화하야함. 더불어 평가자에 대한 위촉장 제도가 있어야 증명이 되어 적극적으로 참여 활동하기가 생각 |

277
철문. 기술수준평가의 진행 과정에서 느껴졌던 기타 에로사항 및 추후 요구사항 등이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>에로사항 및 추후 요구사항</th>
</tr>
</thead>
</table>
| ③ 우주·항공·해양 | • 평가 대상의 범주가 매우 넓어 평가자의 전문분야에 따라 편향적인 평가가 이루어질 수 있음. 예를 들어, 중국은 미국보다 기술수준이 높다는 인식도 있으나, 해당분야를 세분화 하여 보면 중국이 한국보다 기술수준이 높은 대상도 많음. 그러나 이런 상황 빈영이 충분하지 않음. 이런 문제를 극복하기 위해서는 대상 분야와 국가별 평가의 전문성 기준을 부여하는 방법도 생각할 수 있음.
• 기술수준과 격차(%)는 정량적인 상대평가의 중요한 지표일 수 있으나, 2년마다 기술수준 평가를 하면 이전에 평가한 격차가 무색화되는 상황이 발생함. 이런 문제를 극복하기 위해 기술수준(%)만으로 평가하는 것이 바람직함.
• 각 평가 위선들의 상대적인 평가가 객관적인 지표 제공이 필요함.
• 개별설문으로 진행하느냐는 방식이 여러 면에서 유리함으로 생각됨. 다만, 개인적인 생각으로 평가자들이 오도가이나 온라인(zoom) 토의를 거치게 한다면 해당 이슈들에 대해 서로간의 이해의 폭도 넓히고 대화되는 관점도 명확히 해야 평가결과의 품질을 높일 수 있을 것임
• 기술 보고서 등 자료 보충이 필요함.
| ④ 국방 | • 관련분야의 발전 동향이나 기술 추세 등의 기초자료 등을 제공해주면 기술수준평가에 도움이 많이 될 것 같음.
• 기술평가 시에만 전문가의 의견을 받는 것 외, 비추기적으로 대면으로 정책/동향에 대해 공유할 수 있으면 차기 평가 시에 도움 될 것임.
• 보유 데이터에 대해 Chat-gpt 기능이 제공되다면 도움이 될 것임으로 판단됨.
• 응답을 할 수 있도록 충분한 시간을 주는 것이 좋다고 생각함.
• 타 전문가의 의견을 들어볼 수 있는 웹페이지(전문가토론)이 있었으면 좋겠고, 수준조차에 두 번째 참여하면서 온라인체 제한없는 받아 보고 키스토 직관과의 컨택을 없었음.
| ⑤ 기계·제조 | • 각 국가별 최고 수준의 기술이 있고 그 외 기술편차가 있는데 이에 대한 고려가 부족함.
• 글로벌 선진국들의 연구개발 정책 자료가 필요함.
• 기술개발을 위한 국가 정책(현재/미래 방향)에 대한 정보가 있으며 좋겠고, 향후 동향 등의 자료도 보완이 되면 좋을 것 같음.
• 기술동향 전망이 수준보다 더 중요함.
• 기술수준 평가의 추후 Action Plan이 잘 안 보임. 과학기술 정책에 이 결과를 반영하는지 한다면 어떻게 반영하는지 공유함.
• 기존 자료를 많이 제공해주면 좋겠고(최근 3년간 자료 등)
• 설문의 활용 주체가 누구인지, 시사점이 무엇인지 명확하지 않음.
• 세심한 평가를 위해 관련자료 선정 검토가 충분하면 좋겠는데 평가 하면서 일념이 살펴야 하므로 시간이 예측보다 많이 소요됨.
• 조사기간이 언제지정일지 가능한 일찍 공지해주시면 좋겠음
• 참여를 유도할 방안이 필요함.
• 평가 시 참고할 자료를 충분히 제공하고, 제공한 자료에서 핵심부분을 추출하면 명확한 평가에 도움이 될 것으로 보임.
• 한 번에 평가해야 할 항목의 수 너무 많으면 참여율이 저조할 수 있음. 단계적으로 추진할 경우 1회에 평가해야 할 항목의 수가 줄어 참여도가 높아질 가능성이 있음.
질문. 기술수준평가의 진행 과정에서 느껴졌던 기타 애로사항 및 추후 요구사항 등이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대본류</th>
<th>애로사항 및 추후 요구사항</th>
</tr>
</thead>
</table>
| ⑥ 소재·나노 | - 경쟁국가와 비교 가능한 정보의 수지 제공
 - 기술 평가에 대해 적극적으로 참여한 위원들로 대상으로 향후 과제 기획,위원 등으로 추대할 수 있는 시스템을 구축할 수 있다면 더욱 높은 응답률 및 수준 높은 평가 결과를 얻을 수 있을 것으로 생각됨
 - 기술수준평가가 데이터에 입각한 기술적 측면이 중요하다 개인적 견해가 정성적인 면에서 다뤄지는 경우가 있음
 - 분야별 전문가(평가자) 토론(피팅)을 통해서 최종 결정하는 것이 필요함
 - 자료제공 등이 이루어지고 있지만 평가하는 것이 주관/적관에 영향을 줄게 발을 수밖에 없음
 - 적극적 참여가 가능한 평가위원 섭외가 중요함, 일부 위원들은 별다른 평가의견 제시가 없음
 - 전문분야라도 연구자가 기술의 동향이나 각국의 정책, 연구개발 투자현황 등은 파악하기 어려우며 특히 사정동향은 정가가 제한적임, 이러한 부분들이 충분히 제공되면 보다 객관적인 평가가 이루어질 수 있을 것으로 판단됨
 - 전반적인 분야를 �从容하여 의견을 조사하는 방향 고려가 필요함 |
| ⑦ 농림수산·식품 | - 기술수준 격차 산정 기준 있으면 좋겠습니다.
 - 기술수준평가 종합분석결과 보고서를 평가위원들에게 제공해 주셨으면 함
 - 기술이론과 연계된 산업적 성과 실적 데이터가 있으면 평가를 빠른 효율적으로 수행할 수 있을 것으로 판단됨
 - 농업 분야에서 유럽의 경우 네덜란드를 제외하고는 각국의 기술수준을 잘 알 수 있는 정보가 부족하고, 중국과 일본의 경우도 사례연구가 많이 부족하여 막연한 경험치에 근거할 수밖에 없음, 스마트농업 분야의 기술수준 평가를 위해 해당국들에 대한 기술수준 보고서가 더 연구되었으면 함
 - 해양 요약 등을 제공하여 시간을 절약할 필요가 있음
 - 전체 설문지를 한글 파일로 제공했습니다 할, 한글 파일에서 먼저 작성한 후, 그것을 보고 복사하면서 기존 방식의 평가를 한다면 더 정확하고 일관된 평가를 할 수 있을 것 같음, 현재는 자간간 설명문을 보기 불편한 점 차례로 통합하셔서 작성하기에 어려움이 있음
 - 최근 3년간 데이터 결과를 받아 볼 수 있으면 더 정확한 평가를 할 수 있을 것임
 - 추상적인 문항이 다소 있음, 예로 최고기술 보유국, 기술적차 등은 구체화하는 데 문제가 있어 보이며, 문항을 좀 더 구체화할 필요가 있어 보임
 - 평가방식과 지사안내문이 따로 직관적이지 않아서 정확한 평가를 위한 세밀한 이해 노력이 요구되는 경우가 있음
 - 평가에 대한 시간을 좀 더 주시면 좋을 것 같음. 총 문항의 수도 미리 알려주시면, 어느 정도의 시간을 투자해야 하는지를 예측하여 시간을 확보하는데도 도움이 될 것 같음
 - 평가에 있어서 필요한 정보가 매우 부족함. 진보적 기술의 대부분은 기업이 보유한 경우가 많아 국가별 주요기업이 가지고 있는 기술정보를 수집하여 제공되었으면 하고 산업동향에 대한 자료도 제공하였으면 좋을 것임
 - 평가항목이 바뀌는 경우도 있어 이에 따른 자료수집에 어려움이 많음. 평가항목을 사전에 미리 공지해 주는 것도 좋을 것임
 - 해당 5개국의 기술수준을 평가하기 위한 데이터로서 논문, 특허 등을 어떻게 비교할 것인가에 대한 고민이 필요함 |
질문. 기술수준평가의 진행 과정에서 느껴졌던 기타 어려움사항 및 추후 요구사항 등이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>이슈내용</th>
</tr>
</thead>
</table>
| 생명･보건의료 | • 시스템에서 접근할 수 없는 시장 자료 등을 평가위원이 직접 가능하게 해주면 좋을 것 같음
 • 각자 만든 분야에서 시간을 내면서 작성하기 때문에 충분한 기간을 주면 좋겠음
 • 국가 시장의 변화(국가별)와 정책, 규제, 제도 등에 대한 요약된 정보가 있다면 기술수준평가를 진행할 때 도움이 될 것 같음
 • 기술수준평가 초기 인원을 친절히 해 주시면 좋겠음
 • 기초 역량이, 기기 개발 등의 기술 역량은 부족한데, 응용된 기술을 사용하는 것은 발달된 경우 역량의 정도를 파악하기 애매함. 이 내용을 나누어 설문을 만드는다면 좋겠다. 실제로 우리나라의 개인 및 개발 연구소, 병원 등의 의료, 연구 기술 등은 매우 발달되어 있으나, 실제 사용하는 장비, 소모품 등 모든 제품들을 거의 수입에 의존하고 있어 과연 체계적으로 보았을 때 이 분야에 기술 역량이 있다고 표현해야 할지 애매함. 이러한 부분을 나누어 평가하여 우리가 과연 어떠한 부분에 더욱 투자와 개발이 필요한지 도와주 볼 필요가 있음
 • 분야별 기술수준평가 요약 둘 등이 제공된다면 기술수준평가 시 활용이 가능하며 객관적인 평가에 활용이 가능할 수 있으리라 판단됨
 • 사전에 충분한 자료가 공유가 되고 있어 이게 진행된다면 좋겠음
 • 전문분야의 영역이 넓어보니, 잘 아는 분야 외에 선뜻 평가하기 어렵다고 생각되는 항목들이 존재했음
 • 조사 참여자에게 조사결과도 같이 제공해 주면 좋겠음
 • 질문이 약간 모호한 부분이 있음
 • 평가를 수치화하여 제시하는 것(특히 기술적 차년 수)에 어려움이 있음. 다른 대안이 있는 것도 아닌 것 같아서 더 어려움 |
| 에너지･자원 | • 1~2년 단위로 국내 기술이 현장화되는 파생품을 넣는 게 다소 부담됨. 국내 수준과의 편차도 적거나 나타내는 데에 부담이 있음. 끊임 없이, 여러 사람들의 의견으로 정리하는 것이 맞겠지만, 이 부분도 생각이나 기준이 달라 손자에 대한 신뢰를 갖기 어려움
 • 국가별 기술개발 및 투자현황, 인프라 현황에 대한 최근 정보가 부족함
 • 기술 분야별로 기술 발전 속도 및 주기가 매우 다름으로 분야별로 평가하기를 달리하는 것을 재현함
 • 기술 수준평가 전 인건 결과물 또는 보고서 공유가 필요함. 사전 검토 및 참고 시간이 주어진다면, 차년도 기술수준평가에 대해서 심도 있는 평가 진행이 될 것으로 판단됨
 • 기술수준 평가 방법에 대한 가이드라인 제공 및 사전 교육이 필요함
 • 기술수준 평가를 위한 자료를 대부분 평가위원 스스로 구해서 참고하다 보니 많은 시간 투입이 요구되어 불편함
 • 기술수준을 정량화할 때 가이드라인이 제공되었으면 향
 • 주관적/정성적 부분(기술수준 %, 기술수준 차이 년 수 등)을 결정하는 것이 어려움. 2차 멤버가 조사가 도와져야 했으나 한계가 있음. 이에, 예시 자료나 평가할 수 있는 기술 자료를 양적/질적으로 보완했으면 함
 • 모든 항목에 담하기 보다는 담변 가능한 분야만 평가할 수 있도록 하는 것이 신뢰성 있는 조사가 될 것으로 사료됨
 • 우선진단진단 기술에는 몇 가지가 있음. 그러나 내용을 보니, 특정 기술 관련에서 우선진단진단 기술 점검을 평가하는 것도 있어, 평가 사례 변영이 됐을 줄 같음
 • 설문조사 시스템을 보다 적극적으로 개선할 필요가 있음
 • 이차전지 기술에서는 세계 최고 수준의 국가가 기타 국가와의 차이가 커, 이를 명확히 구분하여 수준 평가하기가 어려움
 • 초반 질문들이 기술평가에 바람직한 차점을시는지보다 이에 대한 자료들은 구하기 어려움. 기초이면서 필요성에 대한 내용에 집중해 평가하는 것이 바람직함
 • 해외 정부정책에 대한 자료 공유를 부탁드림 |

280
질문. 기술향수평가의 진행 과정에서 느껴졌던 기타 애로사항 및 추후 요구사항 등이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>애로사항 및 추후 요구사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경·기상</td>
<td>• 기술 격차 등을 주관적인 판단으로 정하기 때문에 객관적 할 수 있는 기준이 제시 되면 유용할 듯함
• 기술수준평가 시 생각보다 많은 준비와 시간이 필요함으로서 자료를 배포하는 방법이 있었으면 좋겠음
• 산업계 종사자로서 가끔 질문이 어렵다고 느끼함
• 설명 내용이 너무 많음
• 원천기술을 응용하여 산업에 적용한 기술에 대한 통계가 매우 부족함
• 소급 새로운 단지 나올 때를 내려면 질문지 설계를 다르게 할 필요도 있을 것 같음
• 조사기간의 충분한 제공이 필요함
• 구체적인 질문이 필요함
• 특정 기술에 대해서는 잘 알지 못하여 비교평가가 어려움
• 평가 관련 계획, 일정 등 사전 공지가 필요함
• 현재 평가방식은 작성하기 힘든 부분이 많아서 응답이 없어 작성하는 경우도 있음. 자료에 대한 설명을 듣둔 수 있는 기회가 필요해 보임</td>
</tr>
<tr>
<td>ICT·SW</td>
<td>• EU의 경우 한 국가가 아닌 여러 국가의 집합체로서 한 단위로 비교평가하기 어려운 점이 있으며, 특히 정보가 미국, 중국, 일본에 처우차이로 EU의 현황을 파악하기 어려움. 충분한 자료 제공 없이 전문가 개인간의 직관과 단면적 정보에 의존하는 경향이 있어 객관적 평가에 어려움이 많음
• 각 연구 기술 분야별로 많은 정보를 찾고 분류하고 분석이 필요해 보임. 또한, 산업체에 있는 전문가들이 실제 연구 기술 차이를 더 잘 재현할 수 있으나, 대학 및 연구소뿐만 아니라, 기업의 전문가들도 기술수준평가에 함께 참여하는 것도 좋을 듯함
• 국가별 기술수준 파악을 위한 레퍼런스가 더 있으면 좋겠고, 국가별로 정책이 세워지기 전에 그것을 형성한 위원회 정보(주제, 기간, 인적 구성 등)가 있으면 좋겠음
• 기술 수준 평가가 일부 단면적으로 급하게 진행되는 경향이 있고, 전문성 있는 분야가 제한적이어서, 설명 중심의 조사와 대별로 전문가들이 그 결과를 토의 등을 통하여 수준을 결정하는 절차가 있으면 좋음
• 기술수준 격차(년, %)는 어떠한 정량적인 데이터의 근거가 없어, 개인별로 기준이 다르게 그 결과 값 평균해서 보여주는 것은 의미가 없다고 생각함
• 문제가 어려운 부분이 있어 쉽게 진행이 가능하도록 기초 데이터를 충분히 제공해 주셨으면 함. 미국, 중국 등 자료가 많은 국가는 상대적으로 평가가 수월하지만, 일본 등 자료가 많지 않은 국가는 기술 수준 평가가 어려움
• 부각 기술과 산업적으로 피진 기술에 대한 분석과 필요함
• 전문 분야의 시장 및 기술 동향 보고서 등의 경우 조사 기간 동안이라도 이를 열람할 수 있는 지원이 있으면 좋을 것 같음
• 조사하는 분야가 정확한 의사결정을 하는데 모호한 경우가 있음. 예를 들어 연구개발 인프라, 특히 정비와 시설 같은 개념은 다양한 관점에서 해석 가능한데 하나의 개념으로 제시하더라도 판단에 어려움이 있음. 국가가 체계적으로 구축한 인프라도 있고 연구 단위별로 구축한 인프라도 있고 기업이 구축한 인프라가 있으며 인프라의 유형에 따라서도 구분하여 평가가 이루어져야 할 것으로 보임
• 참여시설에 대한 종방(참여요청문공 또는 위임장)을 받을 수 있는 안내를 해주시면 좋겠음
• 평가 결과에 대한 자세한 분석도 함께 볼 수 있다면 도움 됨
• 현재에는 100% 온라인으로 기술향수 평가를 하는데, 전문가들이 모여서 어느 정도 토론을 할 수 있는 자리가 마련되면 좋겠음</td>
</tr>
</tbody>
</table>

281
6. 기술수준평가 진행시 필요한 개선사항

■ 기술수준 평가 진행시 필요하다고 느꼈던 개선사항에 대해 질문하였고 그 결과를 응답자 전문분야 (11개 분야)별로 구분하여 정리하였음

[주관식 응답] 기술수준평가 진행시 필요한 개선사항

<table>
<thead>
<tr>
<th>대분류</th>
<th>기타 개선사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td></td>
</tr>
<tr>
<td>건설·교통</td>
<td>• 가시적으로 보기 편하도록 보완을 해주면 좋겠음</td>
</tr>
<tr>
<td></td>
<td>• 구체적인 기술에 대한 예시가 필요함</td>
</tr>
<tr>
<td></td>
<td>• 기술동향을 제외하고 메가트렌드, 정책, 환경, 경제 등 동향에 대한 참고자료가 있으면 좋겠음</td>
</tr>
<tr>
<td></td>
<td>• 국가 간 비교가 어느 정도 의미는 있었겠지만, 실질적인 기술수준평가에는 한계가 있음</td>
</tr>
<tr>
<td></td>
<td>• 기술수준평가를 위해 각 기술보유국에 대한 사전 기초정보 제공이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 기술수준평가를 위한 기초내용부터 최근 트렌드까지의 정보 제공이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 사전에 제공되는 정보/자료가 일부는 유사적이고 기계적인 느낌을 받았음. 혼신에 다가갈 수 있는 정교한 정보/자료로 발전하였으면 좋함</td>
</tr>
<tr>
<td></td>
<td>• 정량적인 수치를 매년 하는 것보다 일반처럼 실재 연구자들의 인터뷰를 통한 키워드를 조사하여 향후 미래와 해외 기술 동향조사가 중요함</td>
</tr>
<tr>
<td></td>
<td>• 트렌드 변화에 맞게 일부 신규 질문이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 평가위원이 요청 시 기술수준 보고서를 보내주면 좋겠음</td>
</tr>
<tr>
<td>②</td>
<td></td>
</tr>
<tr>
<td>재난안전</td>
<td>• 핵규의 새로운 기술동향 제공이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 기술 분류 체계의 장단점 개선이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 업무자 세부문에 따른 설명이 필요함</td>
</tr>
<tr>
<td>③</td>
<td></td>
</tr>
<tr>
<td>우주·항공·해양</td>
<td>• 기술수준평가는 매우 주관적임. 가령 우리나라가 선진국 대비 80%이상, 기술격차 2-3년을 표준으로 생각하는 것 같음. 이에, 기술격차를 20년이라고 표시하면, 타무지 없는 의견으로 무시하거나, 전차가 오기도 함. 그런데, 20년으로 표기한 이유는, 선진국에서 20년 전에 성공했던 핵심적 정책임무를 아직도 달성하지 못하며 20년으로 표기한 것임. 기술수준의 100% 대비라고 해도, 99%에서 1%는 까마득한 정책일수도 있고 10년 이상 걸릴 수도 있음. 이런 주관적인 부분을 최소화할 수 있는 기준을 주기 바람</td>
</tr>
<tr>
<td></td>
<td>• 대상 기술에 대한 웅크라, 세미나 등을 통한 토론이 사전적으로 이뤄지면 좋겠음</td>
</tr>
<tr>
<td></td>
<td>• 사전 관련 보고서 등의 제공이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 전문가 토론 시간을 가질 수 있는 기회가 없었으면 서로 다른 생각하는 것을 이해하고 기술을 보는 인식을 증진할 수 있을 것 같음</td>
</tr>
<tr>
<td></td>
<td>• 응답한 결과가 최종결과에 어떤 식으로 영향을 미치는지, 그리고 그 결과는 어떤 목적으로 활용될 예정인지 더 정확히 알면 좋을 것 같음. 평가자들의 선정기준과 총 몇 분을 대상으로 진행 중인지, 조사결과를 대략 어떤 식으로 취합할 것인지 조사의 최종목적은 무엇인지를 구체적으로 제시해 주시면 더 편안한 마음으로 조사 목적에 부합하도록 노력할 수 있을 것 같음</td>
</tr>
<tr>
<td></td>
<td>• 평가 물을 확대하고, 최근 경향성별로 반영하기 위한 노력이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 평가를 진행하는 화면에 간략한 정보를 제공할 수 있는 펼並將 혹은 사이드 메뉴가 필요함</td>
</tr>
<tr>
<td></td>
<td>• 해당분야 전문가 추천 항목을 널리시 향후 명령 있는 분들의 평가를 추천했으면 좋겠음</td>
</tr>
<tr>
<td>④</td>
<td></td>
</tr>
<tr>
<td>국방</td>
<td>• 가능한 평가 대상 기관을 계속 주저하는 것이 좋다고 판단됨</td>
</tr>
<tr>
<td></td>
<td>• 조사서 조건 검토 시 전문가 의견들이 중 더 정제되어 반영되었으면 함</td>
</tr>
<tr>
<td></td>
<td>• 참고 데이터 체계의 편리하도록 개선이 필요함</td>
</tr>
<tr>
<td></td>
<td>• 향후 시간에 품질이 드립, 평가한 기관이 있어 충분한 시간 제공이 필요함</td>
</tr>
<tr>
<td>⑤</td>
<td></td>
</tr>
<tr>
<td>기계·제조</td>
<td>• 기기의 기술수준 평가의 추이를 각 항목마다 동시에 제공하여 평가의 신뢰성을 높일 필요가 있음</td>
</tr>
<tr>
<td></td>
<td>• 기술의 발전방향과 미래 트렌드의 변화를 치명하고, 이에 대한 준비를 하는 관점에서 조사 및 자료정리가 되었으면 함</td>
</tr>
</tbody>
</table>
질문. 기술수준평가의 진행 과정에서 필요하다고 느껴졌던 기타 개선사항이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>기타 개선사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>메일 송부 시 평가 마감일정을 표기해주면 좋겠음</td>
<td>오타나 정확한 기기 보다 정확한 내용이 필요함</td>
</tr>
<tr>
<td>산업계 관련 전문가의 현장기술 경험의 필요함</td>
<td>산업계 관련 전문가의 현장기술 경험의 필요함</td>
</tr>
<tr>
<td>융합적인 산업이나 제품이 다양하게 나타남으로 다른 분야의 전문가들과 미팅 같은 것을 자유롭게 하는 것이 있겠으면 좋을 것임</td>
<td>융합적인 산업이나 제품이 다양하게 나타남으로 다른 분야의 전문가들과 미팅 같은 것을 자유롭게 하는 것이 있겠으면 좋을 것임</td>
</tr>
<tr>
<td>자신의 전문 기술 분야가 아닌 경우 기술수준평가는 피상할 수밖에 없음. 따라서 보다 정확한 평가에 도움 될</td>
<td>자신의 전문 기술 분야가 아닌 경우 기술수준평가는 피상할 수밖에 없음. 따라서 보다 정확한 평가에 도움 될</td>
</tr>
<tr>
<td>질문이 구체화되길 바람</td>
<td>질문이 구체화되길 바람</td>
</tr>
<tr>
<td>참여할 수 있는 인원인 수 제공 바람(스마트폰 제공 등)</td>
<td>참여할 수 있는 인원인 수 제공 바람(스마트폰 제공 등)</td>
</tr>
<tr>
<td>최종결과를 공유해 주시면 좋겠습니다.</td>
<td>최종결과를 공유해 주시면 좋겠습니다.</td>
</tr>
<tr>
<td>해외 기초정보를 제공해주면 좋겠음. 놓친 정보가 있음에도 모르기 때문임</td>
<td>해외 기초정보를 제공해주면 좋겠음. 놓친 정보가 있음에도 모르기 때문임</td>
</tr>
</tbody>
</table>

⑥ 소재·나노

객관적 수치 기반의 평가요소 도입이 필요함	객관적 수치 기반의 평가요소 도입이 필요함
기술수준 평가 후 정책적 방향도를 제공해주면 많은 도움이 될 것 같음. 단순히 평가만 하면 이 평가결과가 어떻게 활용되었는지 알 수 없음	기술수준 평가 후 정책적 방향도를 제공해주면 많은 도움이 될 것 같음. 단순히 평가만 하면 이 평가결과가 어떻게 활용되었는지 알 수 없음
전문적이고 객관적인 평가는 가능한 다양한 자료의 제공이 필요하며 검토할 사건적 여유가 필요함	전문적이고 객관적인 평가는 가능한 다양한 자료의 제공이 필요하며 검토할 사건적 여유가 필요함
전문가 그룹의 정기적인 회의가 필요함	전문가 그룹의 정기적인 회의가 필요함
현 정부와 전정부의 R&D 투자 및 진행현황 자료가 제공되면 좋겠음	현 정부와 전정부의 R&D 투자 및 진행현황 자료가 제공되면 좋겠음

⑦ 농림수산·식품

각 기술별 기술이미지 및 특허에 대한 산업적 적용이 이루어져 있는지에 대한 자료가 필요함	각 기술별 기술이미지 및 특허에 대한 산업적 적용이 이루어져 있는지에 대한 자료가 필요함
대상기술에 대한 경제정보 및 관련 자료를 제공해주면 좋을 것임	대상기술에 대한 경제정보 및 관련 자료를 제공해주면 좋을 것임
스마트농업 분야에 있어서 매우 다양한 기술이 요구되는데 세밀한 분야로 나누어서 전문경력에 맞게 기술평가가 되어야 할 것 같음. 하드웨어 측면의 기술과 소프트웨어 측면의 기술을 한꺼번에 기술평가 하기에 무리가 있음	스마트농업 분야에 있어서 매우 다양한 기술이 요구되는데 세밀한 분야로 나누어서 전문경력에 맞게 기술평가가 되어야 할 것 같음. 하드웨어 측면의 기술과 소프트웨어 측면의 기술을 한꺼번에 기술평가 하기에 무리가 있음
실시간으로 관련 결과를 제공해주면 좋겠음	실시간으로 관련 결과를 제공해주면 좋겠음
이전 화면으로 자유롭게 돌아갈 수 있으면 좋겠음. 그리고 자신이 평가한 자료를 저장할 수 있으면 더욱 연도 평가에 도움이 될 것 같음	이전 화면으로 자유롭게 돌아갈 수 있으면 좋겠음. 그리고 자신이 평가한 자료를 저장할 수 있으면 더욱 연도 평가에 도움이 될 것 같음
평가 자료들이 좀 더 가독성 높도록 제공되면 좋을 것 같음. 또한 연관 분야의 자료들도 참고가 필요한 경우들이 있어 이에 대한 접근도 가능하면 좋겠음(예를 들어 식품위생 & 미생물 분야 & 합성생활학 분야 등은 관련성이 높거나 참고할 자료가 있을 수 있음)	평가 자료들이 좀 더 가독성 높도록 제공되면 좋을 것 같음. 또한 연관 분야의 자료들도 참고가 필요한 경우들이 있어 이에 대한 접근도 가능하면 좋겠음(예를 들어 식품위생 & 미생물 분야 & 합성생활학 분야 등은 관련성이 높거나 참고할 자료가 있을 수 있음)
항목을 재정비가 필요함	항목을 재정비가 필요함
해당 결과가 국가정책에 얼마나 반영되고 있는지 피드백이 있으면 좋겠음	해당 결과가 국가정책에 얼마나 반영되고 있는지 피드백이 있으면 좋겠음
해외 정보에 대한 테마별 분석표가 있다면 보다 높은 평가 수렴성이 확보됨	해외 정보에 대한 테마별 분석표가 있다면 보다 높은 평가 수렴성이 확보됨

⑧ 생명·보건의료

관련 자료의 빠른 접근이 가능하면 좋겠음	관련 자료의 빠른 접근이 가능하면 좋겠음
국가별 기술 수준의 '%'나 기술 격차의 '년도 표기 시 보다 정확히 내용 분석과 원인 파악의 노력이 필요함	국가별 기술 수준의 '%'나 기술 격차의 '년도 표기 시 보다 정확히 내용 분석과 원인 파악의 노력이 필요함
기존 기술수준 평가 관련 자료 공유를 통한 사전 정보 파악이 필요함	기존 기술수준 평가 관련 자료 공유를 통한 사전 정보 파악이 필요함
미국, 유럽, 일본 등 특정 국가와만 비교하는 항목이 있음. 특정 분야는 보복적인 국가가 있는데 문항에 일부라도 타 국가 비교할 수 있는 것이 있으면 함	미국, 유럽, 일본 등 특정 국가와만 비교하는 항목이 있음. 특정 분야는 보복적인 국가가 있는데 문항에 일부라도 타 국가 비교할 수 있는 것이 있으면 함
매년 하는 거 보다 3년 정도의 기간이 적당한 것 같음	매년 하는 거 보다 3년 정도의 기간이 적당한 것 같음
평가위원들의 전문분야도 세밀히 파악되어야 함	평가위원들의 전문분야도 세밀히 파악되어야 함
연구 분야 역시 변동할 수 있으므로, 전문 기술에 입각해 평가위원 pool을 재구성하여 다시 정하는 것도 좋을 보임	연구 분야 역시 변동할 수 있으므로, 전문 기술에 입각해 평가위원 pool을 재구성하여 다시 정하는 것도 좋을 보임
유관의 경우 일부 국가는 역량이 매우 높고 일부는 매우 낮은 편이어서 기준을 조금 정하여 평가하는 것을 제안함	유관의 경우 일부 국가는 역량이 매우 높고 일부는 매우 낮은 편이어서 기준을 조금 정하여 평가하는 것을 제안함
유사한 항목들이 반복되는 경우가 있음	유사한 항목들이 반복되는 경우가 있음
평가할 시간이 빠르게 있었으면 좋겠음. 그리고 기술에 대한 개요 제공이 필요함	평가할 시간이 빠르게 있었으면 좋겠음. 그리고 기술에 대한 개요 제공이 필요함
평균의 합점을 피할 필요가 있음	평균의 합점을 피할 필요가 있음
질문. 기술수준평가의 진행 과정에서 필요하다고 느꼈던 기타 개선사항이 있다면 자유롭게 서술하여 주십시오.

<table>
<thead>
<tr>
<th>대분류</th>
<th>기타 개선사항</th>
</tr>
</thead>
</table>
| ⑨ 언어·자원 | • 가이드라인의 제공이 필요함
• 과거 3~4년간 기술수준평가 트렌드를 공유해 주길 바람
• 국내 투자자는 연구비, 봉사에 대한 정보제공이 필요함
• 기술 분야를 세분화하여 세분화된 기술별 평가가 이루어질 때 활용도가 높을 듯함
• 기술수준평가를 기술의 외 다른 기관에서도 수행하는 경우가 있는데, 이러한 경우 일부 항목이 상이할 수 있음, 외국 기관에서의 평가보고서가 있으면 이런 자료도 도움이 될 수 있을 것으로 사료됨
• 논문, 특히의 정량 분석보다 정성적인 분석 정보가 부족함. 즉 기술 개발 내용에 대한 분석 추가가 필요함
• 단순한 글보다는 그림 도표 미디어 등을 사용하면 더 좋을 듯함
• 문장이 조금 복잡해 보컬erate이 있어 문장 수를 간소화하고 주관적인 내용을 더 많이 포함하면 좋겠음
• 수준 평가 데이터를 기사적으로 파일이 가능할 그래프 등으로 표현할 수 있으면 좋을 듯함
• 정성적 부분을 정량화하는 것이 어려움이 있으며, 이를 보완할 수 있는 자료가 필요함
• 평가에 도움이 될 수 있는 국내외 연구비 투자경향 등의 자료 제공이 필요함 |
| ⑩ 환경·기상 | • 기술수준평가 결과보고서 등 정리된 것을 참여자들에게 취합한 내용을 공개(pdf 등)할 수 있으면 좋겠음
• 다양한 자료를 제공해주면 좋겠음
• 동등한 수준의 중요한 선택지에서 다른 우선순위를 부여해야 하는 경우에 대해 개선이 필요하다고 느꼈음
• 모든 국가의 내용을 다 읽기 힘든 관계로 특정 국가에 대해서는 '특정하기 어려움' 또는 '잘 모르겠음'을 선택할 수 있는 옵션이 있으면 좋겠음
• 온라인으로 하더라도 시간과 비용을 충분히 제공되면 좋겠음
• 유럽을 한 나라로 보기 어려운 경우가 많으니 구체적인 국가단위로 분리하면 좋을 듯함
• 평가 기간을 문자에 함께 작성해주면 더 좋을 것 같음
• 평소 기술수준평가와 관련한 자식과 정보 제공이 있으면 좋을 듯함 |
| ⑪ ICT·SW | • 세부 항목 선정을 좀 더 조 직적이고 체계적으로 할 필요가 있음. 현재는 중복성도 많고 이 항목이 왜 선정되었는지 이해하기 어려운 면도 많이 있음
• ESG 관점에서의 기술성 평가가 필요하다고 생각됨
• PC기반으로 평가하면 좋겠음
• 각 항목의 수치를 파악할 수 있으면 좋겠음
• 객관적으로 평가할 수 있도록 다양한 시장, 산업 등 조사 자료에 대한 지원과 시각이 더할 수 있는 정보가 간의 토론을 통해 보다 객관적인 평가 결과를 도출할 필요성이 있음
• 국가별 혁신 보유기술 리스트를 정리할 필요가 있음
• 기술 분야를 더 세분화하고 관련 전문가들의 참여를 확대하여 세분하고 객관성을 높일 수 있으면 좋겠음
• 기술 분류체계에 대한 의견부터 수렴하고 조정하는 과정이 선행되었으면 함
• 기술수준의 수치를 정점에서 이하 좀 더 객관적인 evidence를 늘려나가는 방향으로 매년 개선해 나가 필요가 있다고 본
• 기술수준평가 후 상기 자료가 어떻게 정책에 반영되었는지 또는 어떻게 쓰일 것인지에 대한 설명이 있다면 평가가들이 더욱 적극적으로 참여할 것 같음
• 설문을 간소화하면 좋겠음
• 지방 의견 제시 문항의 확대가 필요함
• 전년도 다른 원리의 작성 의견이나 내용을 서로 공유할 수 있다면 더 구체적인 내용을 작성할 수 있을 것으로 판단됨
• 평가 원리가 더 추가되었으면 함
• 평가 이후에 다른 평가자들의 결과를 알 수 있다면, 스스로 편향성 정도를 파악하는데 도움이 될 것 같음 |
7. 개선방안 도출에 도움을 줄 의향

- 개선방안 도출에 도움을 줄 의향에 대해 의견을 물어본 결과, 응답자의 89.2%가 도움을 줄 의향이 있다고 응답하였습니다.

(Base: 전체 응답자, n=502, 단위: %)

질문: 기 수준평가 참여 경험을 토대로 추후 개선방안 도출(24년 기술수준평가 템파이 조사)을 위해 도움을 주실 의향이 있으십니까?

- '24년 기술수준평가 템파이 조사에 도움을 줄 의향

<table>
<thead>
<tr>
<th></th>
<th>사례수</th>
<th>예(의향 있음)</th>
<th>아니오(의향 없음)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td>502</td>
<td>89.2</td>
<td>10.8</td>
</tr>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>남성</td>
<td>467</td>
<td>89.7</td>
<td>10.3</td>
</tr>
<tr>
<td>여성</td>
<td>35</td>
<td>82.9</td>
<td>17.1</td>
</tr>
<tr>
<td>소속</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산업계</td>
<td>90</td>
<td>92.2</td>
<td>7.8</td>
</tr>
<tr>
<td>학계</td>
<td>165</td>
<td>86.7</td>
<td>13.3</td>
</tr>
<tr>
<td>연구계</td>
<td>217</td>
<td>89.4</td>
<td>10.6</td>
</tr>
<tr>
<td>기타</td>
<td>30</td>
<td>93.3</td>
<td>6.7</td>
</tr>
<tr>
<td>연령</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30대</td>
<td>18</td>
<td>83.3</td>
<td>16.7</td>
</tr>
<tr>
<td>40대</td>
<td>160</td>
<td>91.3</td>
<td>8.8</td>
</tr>
<tr>
<td>50대</td>
<td>252</td>
<td>88.5</td>
<td>11.5</td>
</tr>
<tr>
<td>60대 이상</td>
<td>72</td>
<td>88.9</td>
<td>11.1</td>
</tr>
<tr>
<td>연구 경력</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10년 미만</td>
<td>12</td>
<td>91.7</td>
<td>8.3</td>
</tr>
<tr>
<td>10~15년 미만</td>
<td>38</td>
<td>84.2</td>
<td>15.8</td>
</tr>
<tr>
<td>15~20년 미만</td>
<td>75</td>
<td>90.7</td>
<td>9.3</td>
</tr>
<tr>
<td>20년 이상</td>
<td>377</td>
<td>89.4</td>
<td>10.6</td>
</tr>
</tbody>
</table>
2022 기술수준평가

※ 동 보고서의 내용에 문의 사항이 있는 경우 아래로 연락주시기 바랍니다.

과학기술정보통신부 과학기술정보분석과
주 소 : 세종특별자치시 갈매로477 정부세종청사 4동
담당자 : 김정우 주무관(ecopark11@korea.kr)

한국과학기술평가원 전략기술계획본부 기술예측센터
주 소 : 충청북도 음성군 맹동면 원중로 1339
전 화 : 043-750-2403
담당자 : 이희권 연구위원(hkwlee@kistep.re.kr)