본문으로 바로가기

국내외 과학기술 정책에 대한 간략한 정보

단신동향

국내단신

교과부, ‘이달의 과학기술자상’11월 수상자 서강대학교 이용남 교수 선정 원문보기 1

  • 국가 한국
  • 생성기관 교육과학기술부
  • 주제분류 과학기술인력
  • 원문발표일 2009-11-05
  • 등록일 2009-11-05
  • 권호

- 기하종수가 0인 단순 연결된 일반형 복소곡면의 건설방법 개발 성공 -

 □ 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)은 특이점(singularity)의 변형이론을 기반으로 한 일반형 복소곡면의 건설방법을 창의적으로 개발하여 학문 발전에 기여한 서강대학교 수학과 이용남 교수(李龍男 45세)를 ‘이달의 과학기술자상’ 11월 수상자로 선정하였다.




□ 이용남 교수는 지난 10년간 서강대학교에서 대수다양체의 분류 및 건설의 일환으로, ▲일반형 대수(복소)곡면의 건설 및 분류 ▲대수곡선 모듈라이(moduli) 공간의 기하학적 구조에 대한 연구를 꾸준히 진행해왔다.




 ○ 이 교수는 교육과학기술부와 한국연구재단의 각종 연구지원사업의 지원으로 대수다양체의 분류 및 건설에 대한 연구를 진행해 왔고, 특히 2008년에는 ‘세계적 수준의 연구중심대학 육성(World Class University, WCU)사업’의 “세계적 석학초빙 지원과제”로 선정되어, 교과부와 연구재단의 지원을 받아 세계 석학인 M. Reid교수와 공동연구를 추진하고 있다.




□ 20세기 기하학과 위상수학은 눈부신 발전을 거듭해 왔지만, 수학계에서 여전히 매우 난해한 연구 분야로 인식하고 있는 4차원 다양체는 시공간의 일반화된 개념으로 흥미로우면서도 중요한 테마여서 수학자들이 오랫동안 연구해 왔다.




 ○ 아주 좋은 성질을 갖는 특정한 종류의 4차원 다양체를 찾는 것이 이 분야의 가장 중요하고도 근본적인 문제로서, 특히 ‘기하종수가 0인 단순 연결된 일반형 복소곡면’의 존재성은 이 분야의 핵심문제로 남아있었다.




 ○ 19세기말 대수기하학자들은 ‘기하종수가 0인 대수곡면은 유리곡면일 것’이라고 예측하였으나, 1896년 Enriques에 의해 첫 반례가 발견되면서, 기하종수가 0인 일반형 대수곡면의 건설이 대수기하학자들의 중요한 연구주제가 되었다.




 ○ 대수기하학자들은 ‘기하종수가 0인 단순 연결된 일반형 복소곡면은 존재하지 않을 것’이라고 예측했는데, 그 이유는 이러한 예를 찾는 것이 거의 불가능했기 때문이었다. 하지만 1983년 Barlow에 의해 반례가 처음 발견되었고, 지금까지 많은 수학자들이 새로운 반례를 찾아내기 위해 부단히 노력했으나, Barlow 곡면 외에는 알려진 복소곡면이 전혀 없었다.




□ 이용남 교수는 위상수학자인 박종일 서울대 교수와 공동으로 ‘특이점 변형이론’이라는 새로운 연구방법을 적용하여, 기하종수가 0인 단순 연결된 일반형 복소곡면의 건설에 성공하였다. 특이점 변형이론은 기존에 알려졌던 방법들과는 전혀 다른 기술로, 기하종수가 0인 일반형 복소곡면 건설의 새 지평을 연 연구로 인정받고 있다.




○ 연구 결과는 독일, 미국, 영국, 이탈리아, 일본의 국제학회 초청강연을 통해 검증을 거친 후, 수학 분야의 세계 최고 권위지 중 하나인 인벤시오네 마테마티케(Inventiones Mathematicae)에 발표되었다. 이 결과는 지난 20여 년 간 4차원 다양체 분야에서 얻어진 가장 획기적인 연구 성과 중 하나로 평가받고 있다.




□ 이 교수는 “앞으로도 계속해서 창의적이고 탁월한 연구결과를 창출하여, 국내 수학의 연구수준을 세계적으로 끌어 올리는데 이바지하겠다.”라고 포부를 밝혔다.  




<자료문의>   ☎ 02-2100-6636, 과학기술문화과장 김병규, 사무관 박문혁

배너존

  • 과학기술정보통신부
  • 케이투베이스
  • ITFIND
  • 한국연구재단
  • 한국연구개발서비스협회
  • 한국과학기술정보연구원